This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality, domain and codomain of a class given by the maps-to notation, where B ( x ) is not constant but depends on x . (Contributed by NM, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fmpox.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| Assertion | fmpox | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹 : ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⟶ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpox.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | vex | ⊢ 𝑤 ∈ V | |
| 4 | 2 3 | op1std | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( 1st ‘ 𝑣 ) = 𝑧 ) |
| 5 | 4 | csbeq1d | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ⦋ ( 1st ‘ 𝑣 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑦 ⦌ 𝐶 ) |
| 6 | 2 3 | op2ndd | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( 2nd ‘ 𝑣 ) = 𝑤 ) |
| 7 | 6 | csbeq1d | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ⦋ ( 2nd ‘ 𝑣 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) |
| 8 | 7 | csbeq2dv | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ⦋ 𝑧 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) |
| 9 | 5 8 | eqtrd | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ⦋ ( 1st ‘ 𝑣 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( ⦋ ( 1st ‘ 𝑣 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑦 ⦌ 𝐶 ∈ 𝐷 ↔ ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 ) ) |
| 11 | 10 | raliunxp | ⊢ ( ∀ 𝑣 ∈ ∪ 𝑧 ∈ 𝐴 ( { 𝑧 } × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ⦋ ( 1st ‘ 𝑣 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑦 ⦌ 𝐶 ∈ 𝐷 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 ) |
| 12 | nfv | ⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) | |
| 13 | nfv | ⊢ Ⅎ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) | |
| 14 | nfv | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 | |
| 15 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 16 | 15 | nfcri | ⊢ Ⅎ 𝑥 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 17 | 14 16 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 18 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 | |
| 19 | 18 | nfeq2 | ⊢ Ⅎ 𝑥 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 |
| 20 | 17 19 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∧ 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) |
| 21 | nfv | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 22 | nfcv | ⊢ Ⅎ 𝑦 𝑧 | |
| 23 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑤 / 𝑦 ⦌ 𝐶 | |
| 24 | 22 23 | nfcsbw | ⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 |
| 25 | 24 | nfeq2 | ⊢ Ⅎ 𝑦 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 |
| 26 | 21 25 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∧ 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) |
| 27 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 29 | eleq1w | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵 ) ) | |
| 30 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 31 | 30 | eleq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 32 | 29 31 | sylan9bbr | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 33 | 28 32 | anbi12d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) ) |
| 34 | csbeq1a | ⊢ ( 𝑦 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) | |
| 35 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → ⦋ 𝑤 / 𝑦 ⦌ 𝐶 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) | |
| 36 | 34 35 | sylan9eqr | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝐶 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) |
| 37 | 36 | eqeq2d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑣 = 𝐶 ↔ 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) ) |
| 38 | 33 37 | anbi12d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∧ 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) ) ) |
| 39 | 12 13 20 26 38 | cbvoprab12 | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑣 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) } = { 〈 〈 𝑧 , 𝑤 〉 , 𝑣 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∧ 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) } |
| 40 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑣 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) } | |
| 41 | df-mpo | ⊢ ( 𝑧 ∈ 𝐴 , 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) = { 〈 〈 𝑧 , 𝑤 〉 , 𝑣 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∧ 𝑣 = ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) } | |
| 42 | 39 40 41 | 3eqtr4i | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) |
| 43 | 9 | mpomptx | ⊢ ( 𝑣 ∈ ∪ 𝑧 ∈ 𝐴 ( { 𝑧 } × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑦 ⦌ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ) |
| 44 | 42 1 43 | 3eqtr4i | ⊢ 𝐹 = ( 𝑣 ∈ ∪ 𝑧 ∈ 𝐴 ( { 𝑧 } × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑦 ⦌ 𝐶 ) |
| 45 | 44 | fmpt | ⊢ ( ∀ 𝑣 ∈ ∪ 𝑧 ∈ 𝐴 ( { 𝑧 } × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ⦋ ( 1st ‘ 𝑣 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑦 ⦌ 𝐶 ∈ 𝐷 ↔ 𝐹 : ∪ 𝑧 ∈ 𝐴 ( { 𝑧 } × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ⟶ 𝐷 ) |
| 46 | 11 45 | bitr3i | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 ↔ 𝐹 : ∪ 𝑧 ∈ 𝐴 ( { 𝑧 } × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ⟶ 𝐷 ) |
| 47 | nfv | ⊢ Ⅎ 𝑧 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 | |
| 48 | 18 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 |
| 49 | 15 48 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 |
| 50 | nfv | ⊢ Ⅎ 𝑤 𝐶 ∈ 𝐷 | |
| 51 | 23 | nfel1 | ⊢ Ⅎ 𝑦 ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 |
| 52 | 34 | eleq1d | ⊢ ( 𝑦 = 𝑤 → ( 𝐶 ∈ 𝐷 ↔ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 ) ) |
| 53 | 50 51 52 | cbvralw | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ ∀ 𝑤 ∈ 𝐵 ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 ) |
| 54 | 35 | eleq1d | ⊢ ( 𝑥 = 𝑧 → ( ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 ↔ ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 ) ) |
| 55 | 30 54 | raleqbidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑤 ∈ 𝐵 ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 ↔ ∀ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 ) ) |
| 56 | 53 55 | bitrid | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ ∀ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 ) ) |
| 57 | 47 49 56 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ⦋ 𝑧 / 𝑥 ⦌ ⦋ 𝑤 / 𝑦 ⦌ 𝐶 ∈ 𝐷 ) |
| 58 | nfcv | ⊢ Ⅎ 𝑧 ( { 𝑥 } × 𝐵 ) | |
| 59 | nfcv | ⊢ Ⅎ 𝑥 { 𝑧 } | |
| 60 | 59 15 | nfxp | ⊢ Ⅎ 𝑥 ( { 𝑧 } × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 61 | sneq | ⊢ ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } ) | |
| 62 | 61 30 | xpeq12d | ⊢ ( 𝑥 = 𝑧 → ( { 𝑥 } × 𝐵 ) = ( { 𝑧 } × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 63 | 58 60 62 | cbviun | ⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) = ∪ 𝑧 ∈ 𝐴 ( { 𝑧 } × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 64 | 63 | feq2i | ⊢ ( 𝐹 : ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⟶ 𝐷 ↔ 𝐹 : ∪ 𝑧 ∈ 𝐴 ( { 𝑧 } × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ⟶ 𝐷 ) |
| 65 | 46 57 64 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹 : ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⟶ 𝐷 ) |