This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for function fi . (Contributed by Jeff Hankins, 7-Oct-2009) (Revised by Mario Carneiro, 24-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiss | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( fi ‘ 𝐴 ) ⊆ ( fi ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦 ) ) |
| 3 | 2 | anim1d | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) → ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) ) ) |
| 4 | 3 | ss2abdv | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ⊆ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) |
| 5 | intss | ⊢ ( { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ⊆ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ⊆ ∩ { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ⊆ ∩ { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) |
| 7 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) | |
| 8 | 7 | ancoms | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ V ) |
| 9 | dffi2 | ⊢ ( 𝐴 ∈ V → ( fi ‘ 𝐴 ) = ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( fi ‘ 𝐴 ) = ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) |
| 11 | dffi2 | ⊢ ( 𝐵 ∈ 𝑉 → ( fi ‘ 𝐵 ) = ∩ { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( fi ‘ 𝐵 ) = ∩ { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) |
| 13 | 6 10 12 | 3sstr4d | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( fi ‘ 𝐴 ) ⊆ ( fi ‘ 𝐵 ) ) |