This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007) (Revised by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2basgen | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) = ( topGen ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( topGen ‘ 𝐵 ) ∈ V | |
| 2 | 1 | ssex | ⊢ ( 𝐶 ⊆ ( topGen ‘ 𝐵 ) → 𝐶 ∈ V ) |
| 3 | simpl | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ( topGen ‘ 𝐵 ) ) → 𝐵 ⊆ 𝐶 ) | |
| 4 | tgss | ⊢ ( ( 𝐶 ∈ V ∧ 𝐵 ⊆ 𝐶 ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ) | |
| 5 | 2 3 4 | syl2an2 | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐶 ) ) |
| 6 | simpr | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ( topGen ‘ 𝐵 ) ) → 𝐶 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 7 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ∈ V ) → 𝐵 ∈ V ) | |
| 8 | 2 7 | sylan2 | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ( topGen ‘ 𝐵 ) ) → 𝐵 ∈ V ) |
| 9 | tgss3 | ⊢ ( ( 𝐶 ∈ V ∧ 𝐵 ∈ V ) → ( ( topGen ‘ 𝐶 ) ⊆ ( topGen ‘ 𝐵 ) ↔ 𝐶 ⊆ ( topGen ‘ 𝐵 ) ) ) | |
| 10 | 2 8 9 | syl2an2 | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ( topGen ‘ 𝐵 ) ) → ( ( topGen ‘ 𝐶 ) ⊆ ( topGen ‘ 𝐵 ) ↔ 𝐶 ⊆ ( topGen ‘ 𝐵 ) ) ) |
| 11 | 6 10 | mpbird | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐶 ) ⊆ ( topGen ‘ 𝐵 ) ) |
| 12 | 5 11 | eqssd | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) = ( topGen ‘ 𝐶 ) ) |