This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prdsxms . The topology generated by the supremum metric is the same as the product topology, when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsxms.y | |- Y = ( S Xs_ R ) |
|
| prdsxms.s | |- ( ph -> S e. W ) |
||
| prdsxms.i | |- ( ph -> I e. Fin ) |
||
| prdsxms.d | |- D = ( dist ` Y ) |
||
| prdsxms.b | |- B = ( Base ` Y ) |
||
| prdsxms.r | |- ( ph -> R : I --> *MetSp ) |
||
| prdsxms.j | |- J = ( TopOpen ` Y ) |
||
| prdsxms.v | |- V = ( Base ` ( R ` k ) ) |
||
| prdsxms.e | |- E = ( ( dist ` ( R ` k ) ) |` ( V X. V ) ) |
||
| prdsxms.k | |- K = ( TopOpen ` ( R ` k ) ) |
||
| prdsxms.c | |- C = { x | E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) } |
||
| Assertion | prdsxmslem2 | |- ( ph -> J = ( MetOpen ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsxms.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsxms.s | |- ( ph -> S e. W ) |
|
| 3 | prdsxms.i | |- ( ph -> I e. Fin ) |
|
| 4 | prdsxms.d | |- D = ( dist ` Y ) |
|
| 5 | prdsxms.b | |- B = ( Base ` Y ) |
|
| 6 | prdsxms.r | |- ( ph -> R : I --> *MetSp ) |
|
| 7 | prdsxms.j | |- J = ( TopOpen ` Y ) |
|
| 8 | prdsxms.v | |- V = ( Base ` ( R ` k ) ) |
|
| 9 | prdsxms.e | |- E = ( ( dist ` ( R ` k ) ) |` ( V X. V ) ) |
|
| 10 | prdsxms.k | |- K = ( TopOpen ` ( R ` k ) ) |
|
| 11 | prdsxms.c | |- C = { x | E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) } |
|
| 12 | topnfn | |- TopOpen Fn _V |
|
| 13 | 6 | ffnd | |- ( ph -> R Fn I ) |
| 14 | dffn2 | |- ( R Fn I <-> R : I --> _V ) |
|
| 15 | 13 14 | sylib | |- ( ph -> R : I --> _V ) |
| 16 | fnfco | |- ( ( TopOpen Fn _V /\ R : I --> _V ) -> ( TopOpen o. R ) Fn I ) |
|
| 17 | 12 15 16 | sylancr | |- ( ph -> ( TopOpen o. R ) Fn I ) |
| 18 | 11 | ptval | |- ( ( I e. Fin /\ ( TopOpen o. R ) Fn I ) -> ( Xt_ ` ( TopOpen o. R ) ) = ( topGen ` C ) ) |
| 19 | 3 17 18 | syl2anc | |- ( ph -> ( Xt_ ` ( TopOpen o. R ) ) = ( topGen ` C ) ) |
| 20 | eldifsn | |- ( x e. ( ran ( ball ` D ) \ { (/) } ) <-> ( x e. ran ( ball ` D ) /\ x =/= (/) ) ) |
|
| 21 | 1 2 3 4 5 6 | prdsxmslem1 | |- ( ph -> D e. ( *Met ` B ) ) |
| 22 | blrn | |- ( D e. ( *Met ` B ) -> ( x e. ran ( ball ` D ) <-> E. p e. B E. r e. RR* x = ( p ( ball ` D ) r ) ) ) |
|
| 23 | 21 22 | syl | |- ( ph -> ( x e. ran ( ball ` D ) <-> E. p e. B E. r e. RR* x = ( p ( ball ` D ) r ) ) ) |
| 24 | 21 | adantr | |- ( ( ph /\ ( p e. B /\ r e. RR* ) ) -> D e. ( *Met ` B ) ) |
| 25 | simprl | |- ( ( ph /\ ( p e. B /\ r e. RR* ) ) -> p e. B ) |
|
| 26 | simprr | |- ( ( ph /\ ( p e. B /\ r e. RR* ) ) -> r e. RR* ) |
|
| 27 | xbln0 | |- ( ( D e. ( *Met ` B ) /\ p e. B /\ r e. RR* ) -> ( ( p ( ball ` D ) r ) =/= (/) <-> 0 < r ) ) |
|
| 28 | 24 25 26 27 | syl3anc | |- ( ( ph /\ ( p e. B /\ r e. RR* ) ) -> ( ( p ( ball ` D ) r ) =/= (/) <-> 0 < r ) ) |
| 29 | 3 | 3ad2ant1 | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> I e. Fin ) |
| 30 | 29 | mptexd | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) e. _V ) |
| 31 | ovex | |- ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) e. _V |
|
| 32 | 31 | rgenw | |- A. n e. I ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) e. _V |
| 33 | eqid | |- ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) = ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) |
|
| 34 | 33 | fnmpt | |- ( A. n e. I ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) e. _V -> ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) Fn I ) |
| 35 | 32 34 | mp1i | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) Fn I ) |
| 36 | 6 | 3ad2ant1 | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> R : I --> *MetSp ) |
| 37 | 36 | ffvelcdmda | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) /\ k e. I ) -> ( R ` k ) e. *MetSp ) |
| 38 | 8 9 | xmsxmet | |- ( ( R ` k ) e. *MetSp -> E e. ( *Met ` V ) ) |
| 39 | 37 38 | syl | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) /\ k e. I ) -> E e. ( *Met ` V ) ) |
| 40 | eqid | |- ( S Xs_ ( k e. I |-> ( R ` k ) ) ) = ( S Xs_ ( k e. I |-> ( R ` k ) ) ) |
|
| 41 | eqid | |- ( Base ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) = ( Base ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) |
|
| 42 | 2 | 3ad2ant1 | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> S e. W ) |
| 43 | 37 | ralrimiva | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> A. k e. I ( R ` k ) e. *MetSp ) |
| 44 | simp2l | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> p e. B ) |
|
| 45 | 36 | feqmptd | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> R = ( k e. I |-> ( R ` k ) ) ) |
| 46 | 45 | oveq2d | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> ( S Xs_ R ) = ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) |
| 47 | 1 46 | eqtrid | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> Y = ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) |
| 48 | 47 | fveq2d | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> ( Base ` Y ) = ( Base ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) ) |
| 49 | 5 48 | eqtrid | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> B = ( Base ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) ) |
| 50 | 44 49 | eleqtrd | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> p e. ( Base ` ( S Xs_ ( k e. I |-> ( R ` k ) ) ) ) ) |
| 51 | 40 41 42 29 43 8 50 | prdsbascl | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> A. k e. I ( p ` k ) e. V ) |
| 52 | 51 | r19.21bi | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) /\ k e. I ) -> ( p ` k ) e. V ) |
| 53 | simp2r | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> r e. RR* ) |
|
| 54 | 53 | adantr | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) /\ k e. I ) -> r e. RR* ) |
| 55 | eqid | |- ( MetOpen ` E ) = ( MetOpen ` E ) |
|
| 56 | 55 | blopn | |- ( ( E e. ( *Met ` V ) /\ ( p ` k ) e. V /\ r e. RR* ) -> ( ( p ` k ) ( ball ` E ) r ) e. ( MetOpen ` E ) ) |
| 57 | 39 52 54 56 | syl3anc | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) /\ k e. I ) -> ( ( p ` k ) ( ball ` E ) r ) e. ( MetOpen ` E ) ) |
| 58 | 2fveq3 | |- ( n = k -> ( dist ` ( R ` n ) ) = ( dist ` ( R ` k ) ) ) |
|
| 59 | 2fveq3 | |- ( n = k -> ( Base ` ( R ` n ) ) = ( Base ` ( R ` k ) ) ) |
|
| 60 | 59 8 | eqtr4di | |- ( n = k -> ( Base ` ( R ` n ) ) = V ) |
| 61 | 60 | sqxpeqd | |- ( n = k -> ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) = ( V X. V ) ) |
| 62 | 58 61 | reseq12d | |- ( n = k -> ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) = ( ( dist ` ( R ` k ) ) |` ( V X. V ) ) ) |
| 63 | 62 9 | eqtr4di | |- ( n = k -> ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) = E ) |
| 64 | 63 | fveq2d | |- ( n = k -> ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) = ( ball ` E ) ) |
| 65 | fveq2 | |- ( n = k -> ( p ` n ) = ( p ` k ) ) |
|
| 66 | eqidd | |- ( n = k -> r = r ) |
|
| 67 | 64 65 66 | oveq123d | |- ( n = k -> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) = ( ( p ` k ) ( ball ` E ) r ) ) |
| 68 | ovex | |- ( ( p ` k ) ( ball ` E ) r ) e. _V |
|
| 69 | 67 33 68 | fvmpt | |- ( k e. I -> ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) ` k ) = ( ( p ` k ) ( ball ` E ) r ) ) |
| 70 | 69 | adantl | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) /\ k e. I ) -> ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) ` k ) = ( ( p ` k ) ( ball ` E ) r ) ) |
| 71 | fvco3 | |- ( ( R : I --> *MetSp /\ k e. I ) -> ( ( TopOpen o. R ) ` k ) = ( TopOpen ` ( R ` k ) ) ) |
|
| 72 | 71 10 | eqtr4di | |- ( ( R : I --> *MetSp /\ k e. I ) -> ( ( TopOpen o. R ) ` k ) = K ) |
| 73 | 36 72 | sylan | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) /\ k e. I ) -> ( ( TopOpen o. R ) ` k ) = K ) |
| 74 | 10 8 9 | xmstopn | |- ( ( R ` k ) e. *MetSp -> K = ( MetOpen ` E ) ) |
| 75 | 37 74 | syl | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) /\ k e. I ) -> K = ( MetOpen ` E ) ) |
| 76 | 73 75 | eqtrd | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) /\ k e. I ) -> ( ( TopOpen o. R ) ` k ) = ( MetOpen ` E ) ) |
| 77 | 57 70 76 | 3eltr4d | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) /\ k e. I ) -> ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) ` k ) e. ( ( TopOpen o. R ) ` k ) ) |
| 78 | 77 | ralrimiva | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> A. k e. I ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) ` k ) e. ( ( TopOpen o. R ) ` k ) ) |
| 79 | 36 | feqmptd | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> R = ( n e. I |-> ( R ` n ) ) ) |
| 80 | 79 | oveq2d | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> ( S Xs_ R ) = ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) |
| 81 | 1 80 | eqtrid | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> Y = ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) |
| 82 | 81 | fveq2d | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> ( dist ` Y ) = ( dist ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) ) |
| 83 | 4 82 | eqtrid | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> D = ( dist ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) ) |
| 84 | 83 | fveq2d | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> ( ball ` D ) = ( ball ` ( dist ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) ) ) |
| 85 | 84 | oveqd | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> ( p ( ball ` D ) r ) = ( p ( ball ` ( dist ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) ) r ) ) |
| 86 | fveq2 | |- ( n = k -> ( R ` n ) = ( R ` k ) ) |
|
| 87 | 86 | cbvmptv | |- ( n e. I |-> ( R ` n ) ) = ( k e. I |-> ( R ` k ) ) |
| 88 | 87 | oveq2i | |- ( S Xs_ ( n e. I |-> ( R ` n ) ) ) = ( S Xs_ ( k e. I |-> ( R ` k ) ) ) |
| 89 | eqid | |- ( Base ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) = ( Base ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) |
|
| 90 | eqid | |- ( dist ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) = ( dist ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) |
|
| 91 | 81 | fveq2d | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> ( Base ` Y ) = ( Base ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) ) |
| 92 | 5 91 | eqtrid | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> B = ( Base ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) ) |
| 93 | 44 92 | eleqtrd | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> p e. ( Base ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) ) |
| 94 | simp3 | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> 0 < r ) |
|
| 95 | 88 89 8 9 90 42 29 37 39 93 53 94 | prdsbl | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> ( p ( ball ` ( dist ` ( S Xs_ ( n e. I |-> ( R ` n ) ) ) ) ) r ) = X_ k e. I ( ( p ` k ) ( ball ` E ) r ) ) |
| 96 | 85 95 | eqtrd | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> ( p ( ball ` D ) r ) = X_ k e. I ( ( p ` k ) ( ball ` E ) r ) ) |
| 97 | fneq1 | |- ( g = ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) -> ( g Fn I <-> ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) Fn I ) ) |
|
| 98 | fveq1 | |- ( g = ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) -> ( g ` k ) = ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) ` k ) ) |
|
| 99 | 98 | eleq1d | |- ( g = ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) -> ( ( g ` k ) e. ( ( TopOpen o. R ) ` k ) <-> ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) ` k ) e. ( ( TopOpen o. R ) ` k ) ) ) |
| 100 | 99 | ralbidv | |- ( g = ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) -> ( A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) <-> A. k e. I ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) ` k ) e. ( ( TopOpen o. R ) ` k ) ) ) |
| 101 | 97 100 | anbi12d | |- ( g = ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) -> ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) <-> ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) Fn I /\ A. k e. I ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) ` k ) e. ( ( TopOpen o. R ) ` k ) ) ) ) |
| 102 | 98 69 | sylan9eq | |- ( ( g = ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) /\ k e. I ) -> ( g ` k ) = ( ( p ` k ) ( ball ` E ) r ) ) |
| 103 | 102 | ixpeq2dva | |- ( g = ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) -> X_ k e. I ( g ` k ) = X_ k e. I ( ( p ` k ) ( ball ` E ) r ) ) |
| 104 | 103 | eqeq2d | |- ( g = ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) -> ( ( p ( ball ` D ) r ) = X_ k e. I ( g ` k ) <-> ( p ( ball ` D ) r ) = X_ k e. I ( ( p ` k ) ( ball ` E ) r ) ) ) |
| 105 | 101 104 | anbi12d | |- ( g = ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) -> ( ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( g ` k ) ) <-> ( ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) Fn I /\ A. k e. I ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( ( p ` k ) ( ball ` E ) r ) ) ) ) |
| 106 | 105 | spcegv | |- ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) e. _V -> ( ( ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) Fn I /\ A. k e. I ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( ( p ` k ) ( ball ` E ) r ) ) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( g ` k ) ) ) ) |
| 107 | 106 | 3impib | |- ( ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) e. _V /\ ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) Fn I /\ A. k e. I ( ( n e. I |-> ( ( p ` n ) ( ball ` ( ( dist ` ( R ` n ) ) |` ( ( Base ` ( R ` n ) ) X. ( Base ` ( R ` n ) ) ) ) ) r ) ) ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( ( p ` k ) ( ball ` E ) r ) ) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( g ` k ) ) ) |
| 108 | 30 35 78 96 107 | syl121anc | |- ( ( ph /\ ( p e. B /\ r e. RR* ) /\ 0 < r ) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( g ` k ) ) ) |
| 109 | 108 | 3expia | |- ( ( ph /\ ( p e. B /\ r e. RR* ) ) -> ( 0 < r -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( g ` k ) ) ) ) |
| 110 | 28 109 | sylbid | |- ( ( ph /\ ( p e. B /\ r e. RR* ) ) -> ( ( p ( ball ` D ) r ) =/= (/) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( g ` k ) ) ) ) |
| 111 | 110 | adantr | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) ) /\ x = ( p ( ball ` D ) r ) ) -> ( ( p ( ball ` D ) r ) =/= (/) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( g ` k ) ) ) ) |
| 112 | simpr | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) ) /\ x = ( p ( ball ` D ) r ) ) -> x = ( p ( ball ` D ) r ) ) |
|
| 113 | 112 | neeq1d | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) ) /\ x = ( p ( ball ` D ) r ) ) -> ( x =/= (/) <-> ( p ( ball ` D ) r ) =/= (/) ) ) |
| 114 | df-3an | |- ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) <-> ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) ) |
|
| 115 | ral0 | |- A. k e. (/) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) |
|
| 116 | difeq2 | |- ( z = I -> ( I \ z ) = ( I \ I ) ) |
|
| 117 | difid | |- ( I \ I ) = (/) |
|
| 118 | 116 117 | eqtrdi | |- ( z = I -> ( I \ z ) = (/) ) |
| 119 | 118 | raleqdv | |- ( z = I -> ( A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) <-> A. k e. (/) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) ) |
| 120 | 119 | rspcev | |- ( ( I e. Fin /\ A. k e. (/) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) -> E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) |
| 121 | 3 115 120 | sylancl | |- ( ph -> E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) |
| 122 | 121 | adantr | |- ( ( ph /\ ( p e. B /\ r e. RR* ) ) -> E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) |
| 123 | 122 | biantrud | |- ( ( ph /\ ( p e. B /\ r e. RR* ) ) -> ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) <-> ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) ) ) |
| 124 | 114 123 | bitr4id | |- ( ( ph /\ ( p e. B /\ r e. RR* ) ) -> ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) <-> ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) ) ) |
| 125 | eqeq1 | |- ( x = ( p ( ball ` D ) r ) -> ( x = X_ k e. I ( g ` k ) <-> ( p ( ball ` D ) r ) = X_ k e. I ( g ` k ) ) ) |
|
| 126 | 124 125 | bi2anan9 | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) ) /\ x = ( p ( ball ` D ) r ) ) -> ( ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) <-> ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( g ` k ) ) ) ) |
| 127 | 126 | exbidv | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) ) /\ x = ( p ( ball ` D ) r ) ) -> ( E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) <-> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) ) /\ ( p ( ball ` D ) r ) = X_ k e. I ( g ` k ) ) ) ) |
| 128 | 111 113 127 | 3imtr4d | |- ( ( ( ph /\ ( p e. B /\ r e. RR* ) ) /\ x = ( p ( ball ` D ) r ) ) -> ( x =/= (/) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) ) ) |
| 129 | 128 | ex | |- ( ( ph /\ ( p e. B /\ r e. RR* ) ) -> ( x = ( p ( ball ` D ) r ) -> ( x =/= (/) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) ) ) ) |
| 130 | 129 | rexlimdvva | |- ( ph -> ( E. p e. B E. r e. RR* x = ( p ( ball ` D ) r ) -> ( x =/= (/) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) ) ) ) |
| 131 | 23 130 | sylbid | |- ( ph -> ( x e. ran ( ball ` D ) -> ( x =/= (/) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) ) ) ) |
| 132 | 131 | impd | |- ( ph -> ( ( x e. ran ( ball ` D ) /\ x =/= (/) ) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) ) ) |
| 133 | 20 132 | biimtrid | |- ( ph -> ( x e. ( ran ( ball ` D ) \ { (/) } ) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) ) ) |
| 134 | 133 | alrimiv | |- ( ph -> A. x ( x e. ( ran ( ball ` D ) \ { (/) } ) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) ) ) |
| 135 | ssab | |- ( ( ran ( ball ` D ) \ { (/) } ) C_ { x | E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) } <-> A. x ( x e. ( ran ( ball ` D ) \ { (/) } ) -> E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) ) ) |
|
| 136 | 134 135 | sylibr | |- ( ph -> ( ran ( ball ` D ) \ { (/) } ) C_ { x | E. g ( ( g Fn I /\ A. k e. I ( g ` k ) e. ( ( TopOpen o. R ) ` k ) /\ E. z e. Fin A. k e. ( I \ z ) ( g ` k ) = U. ( ( TopOpen o. R ) ` k ) ) /\ x = X_ k e. I ( g ` k ) ) } ) |
| 137 | 136 11 | sseqtrrdi | |- ( ph -> ( ran ( ball ` D ) \ { (/) } ) C_ C ) |
| 138 | ssv | |- *MetSp C_ _V |
|
| 139 | fnssres | |- ( ( TopOpen Fn _V /\ *MetSp C_ _V ) -> ( TopOpen |` *MetSp ) Fn *MetSp ) |
|
| 140 | 12 138 139 | mp2an | |- ( TopOpen |` *MetSp ) Fn *MetSp |
| 141 | fvres | |- ( x e. *MetSp -> ( ( TopOpen |` *MetSp ) ` x ) = ( TopOpen ` x ) ) |
|
| 142 | xmstps | |- ( x e. *MetSp -> x e. TopSp ) |
|
| 143 | eqid | |- ( TopOpen ` x ) = ( TopOpen ` x ) |
|
| 144 | 143 | tpstop | |- ( x e. TopSp -> ( TopOpen ` x ) e. Top ) |
| 145 | 142 144 | syl | |- ( x e. *MetSp -> ( TopOpen ` x ) e. Top ) |
| 146 | 141 145 | eqeltrd | |- ( x e. *MetSp -> ( ( TopOpen |` *MetSp ) ` x ) e. Top ) |
| 147 | 146 | rgen | |- A. x e. *MetSp ( ( TopOpen |` *MetSp ) ` x ) e. Top |
| 148 | ffnfv | |- ( ( TopOpen |` *MetSp ) : *MetSp --> Top <-> ( ( TopOpen |` *MetSp ) Fn *MetSp /\ A. x e. *MetSp ( ( TopOpen |` *MetSp ) ` x ) e. Top ) ) |
|
| 149 | 140 147 148 | mpbir2an | |- ( TopOpen |` *MetSp ) : *MetSp --> Top |
| 150 | fco2 | |- ( ( ( TopOpen |` *MetSp ) : *MetSp --> Top /\ R : I --> *MetSp ) -> ( TopOpen o. R ) : I --> Top ) |
|
| 151 | 149 6 150 | sylancr | |- ( ph -> ( TopOpen o. R ) : I --> Top ) |
| 152 | eqid | |- X_ n e. I U. ( ( TopOpen o. R ) ` n ) = X_ n e. I U. ( ( TopOpen o. R ) ` n ) |
|
| 153 | 11 152 | ptbasfi | |- ( ( I e. Fin /\ ( TopOpen o. R ) : I --> Top ) -> C = ( fi ` ( { X_ n e. I U. ( ( TopOpen o. R ) ` n ) } u. ran ( m e. I , u e. ( ( TopOpen o. R ) ` m ) |-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) ) ) ) |
| 154 | 3 151 153 | syl2anc | |- ( ph -> C = ( fi ` ( { X_ n e. I U. ( ( TopOpen o. R ) ` n ) } u. ran ( m e. I , u e. ( ( TopOpen o. R ) ` m ) |-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) ) ) ) |
| 155 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 156 | 155 | mopntop | |- ( D e. ( *Met ` B ) -> ( MetOpen ` D ) e. Top ) |
| 157 | 21 156 | syl | |- ( ph -> ( MetOpen ` D ) e. Top ) |
| 158 | 1 5 2 3 13 | prdsbas2 | |- ( ph -> B = X_ k e. I ( Base ` ( R ` k ) ) ) |
| 159 | 6 72 | sylan | |- ( ( ph /\ k e. I ) -> ( ( TopOpen o. R ) ` k ) = K ) |
| 160 | 6 | ffvelcdmda | |- ( ( ph /\ k e. I ) -> ( R ` k ) e. *MetSp ) |
| 161 | xmstps | |- ( ( R ` k ) e. *MetSp -> ( R ` k ) e. TopSp ) |
|
| 162 | 160 161 | syl | |- ( ( ph /\ k e. I ) -> ( R ` k ) e. TopSp ) |
| 163 | 8 10 | istps | |- ( ( R ` k ) e. TopSp <-> K e. ( TopOn ` V ) ) |
| 164 | 162 163 | sylib | |- ( ( ph /\ k e. I ) -> K e. ( TopOn ` V ) ) |
| 165 | 159 164 | eqeltrd | |- ( ( ph /\ k e. I ) -> ( ( TopOpen o. R ) ` k ) e. ( TopOn ` V ) ) |
| 166 | toponuni | |- ( ( ( TopOpen o. R ) ` k ) e. ( TopOn ` V ) -> V = U. ( ( TopOpen o. R ) ` k ) ) |
|
| 167 | 165 166 | syl | |- ( ( ph /\ k e. I ) -> V = U. ( ( TopOpen o. R ) ` k ) ) |
| 168 | 8 167 | eqtr3id | |- ( ( ph /\ k e. I ) -> ( Base ` ( R ` k ) ) = U. ( ( TopOpen o. R ) ` k ) ) |
| 169 | 168 | ixpeq2dva | |- ( ph -> X_ k e. I ( Base ` ( R ` k ) ) = X_ k e. I U. ( ( TopOpen o. R ) ` k ) ) |
| 170 | 158 169 | eqtrd | |- ( ph -> B = X_ k e. I U. ( ( TopOpen o. R ) ` k ) ) |
| 171 | fveq2 | |- ( k = n -> ( ( TopOpen o. R ) ` k ) = ( ( TopOpen o. R ) ` n ) ) |
|
| 172 | 171 | unieqd | |- ( k = n -> U. ( ( TopOpen o. R ) ` k ) = U. ( ( TopOpen o. R ) ` n ) ) |
| 173 | 172 | cbvixpv | |- X_ k e. I U. ( ( TopOpen o. R ) ` k ) = X_ n e. I U. ( ( TopOpen o. R ) ` n ) |
| 174 | 170 173 | eqtrdi | |- ( ph -> B = X_ n e. I U. ( ( TopOpen o. R ) ` n ) ) |
| 175 | 155 | mopntopon | |- ( D e. ( *Met ` B ) -> ( MetOpen ` D ) e. ( TopOn ` B ) ) |
| 176 | 21 175 | syl | |- ( ph -> ( MetOpen ` D ) e. ( TopOn ` B ) ) |
| 177 | toponmax | |- ( ( MetOpen ` D ) e. ( TopOn ` B ) -> B e. ( MetOpen ` D ) ) |
|
| 178 | 176 177 | syl | |- ( ph -> B e. ( MetOpen ` D ) ) |
| 179 | 174 178 | eqeltrrd | |- ( ph -> X_ n e. I U. ( ( TopOpen o. R ) ` n ) e. ( MetOpen ` D ) ) |
| 180 | 179 | snssd | |- ( ph -> { X_ n e. I U. ( ( TopOpen o. R ) ` n ) } C_ ( MetOpen ` D ) ) |
| 181 | 174 | mpteq1d | |- ( ph -> ( w e. B |-> ( w ` k ) ) = ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) ) |
| 182 | 181 | ad2antrr | |- ( ( ( ph /\ k e. I ) /\ u e. K ) -> ( w e. B |-> ( w ` k ) ) = ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) ) |
| 183 | 182 | cnveqd | |- ( ( ( ph /\ k e. I ) /\ u e. K ) -> `' ( w e. B |-> ( w ` k ) ) = `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) ) |
| 184 | 183 | imaeq1d | |- ( ( ( ph /\ k e. I ) /\ u e. K ) -> ( `' ( w e. B |-> ( w ` k ) ) " u ) = ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) " u ) ) |
| 185 | fveq1 | |- ( w = p -> ( w ` k ) = ( p ` k ) ) |
|
| 186 | 185 | eleq1d | |- ( w = p -> ( ( w ` k ) e. u <-> ( p ` k ) e. u ) ) |
| 187 | eqid | |- ( w e. B |-> ( w ` k ) ) = ( w e. B |-> ( w ` k ) ) |
|
| 188 | 187 | mptpreima | |- ( `' ( w e. B |-> ( w ` k ) ) " u ) = { w e. B | ( w ` k ) e. u } |
| 189 | 186 188 | elrab2 | |- ( p e. ( `' ( w e. B |-> ( w ` k ) ) " u ) <-> ( p e. B /\ ( p ` k ) e. u ) ) |
| 190 | 160 38 | syl | |- ( ( ph /\ k e. I ) -> E e. ( *Met ` V ) ) |
| 191 | 190 | adantr | |- ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) -> E e. ( *Met ` V ) ) |
| 192 | simprl | |- ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) -> u e. K ) |
|
| 193 | 160 74 | syl | |- ( ( ph /\ k e. I ) -> K = ( MetOpen ` E ) ) |
| 194 | 193 | adantr | |- ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) -> K = ( MetOpen ` E ) ) |
| 195 | 192 194 | eleqtrd | |- ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) -> u e. ( MetOpen ` E ) ) |
| 196 | simprrr | |- ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) -> ( p ` k ) e. u ) |
|
| 197 | 55 | mopni2 | |- ( ( E e. ( *Met ` V ) /\ u e. ( MetOpen ` E ) /\ ( p ` k ) e. u ) -> E. r e. RR+ ( ( p ` k ) ( ball ` E ) r ) C_ u ) |
| 198 | 191 195 196 197 | syl3anc | |- ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) -> E. r e. RR+ ( ( p ` k ) ( ball ` E ) r ) C_ u ) |
| 199 | 21 | ad3antrrr | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> D e. ( *Met ` B ) ) |
| 200 | simprrl | |- ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) -> p e. B ) |
|
| 201 | 200 | adantr | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> p e. B ) |
| 202 | rpxr | |- ( r e. RR+ -> r e. RR* ) |
|
| 203 | 202 | ad2antrl | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> r e. RR* ) |
| 204 | 155 | blopn | |- ( ( D e. ( *Met ` B ) /\ p e. B /\ r e. RR* ) -> ( p ( ball ` D ) r ) e. ( MetOpen ` D ) ) |
| 205 | 199 201 203 204 | syl3anc | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> ( p ( ball ` D ) r ) e. ( MetOpen ` D ) ) |
| 206 | simprl | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> r e. RR+ ) |
|
| 207 | blcntr | |- ( ( D e. ( *Met ` B ) /\ p e. B /\ r e. RR+ ) -> p e. ( p ( ball ` D ) r ) ) |
|
| 208 | 199 201 206 207 | syl3anc | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> p e. ( p ( ball ` D ) r ) ) |
| 209 | blssm | |- ( ( D e. ( *Met ` B ) /\ p e. B /\ r e. RR* ) -> ( p ( ball ` D ) r ) C_ B ) |
|
| 210 | 199 201 203 209 | syl3anc | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> ( p ( ball ` D ) r ) C_ B ) |
| 211 | simplrr | |- ( ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) /\ w e. ( p ( ball ` D ) r ) ) -> ( ( p ` k ) ( ball ` E ) r ) C_ u ) |
|
| 212 | simplll | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> ph ) |
|
| 213 | rpgt0 | |- ( r e. RR+ -> 0 < r ) |
|
| 214 | 213 | ad2antrl | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> 0 < r ) |
| 215 | 212 201 203 214 96 | syl121anc | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> ( p ( ball ` D ) r ) = X_ k e. I ( ( p ` k ) ( ball ` E ) r ) ) |
| 216 | 215 | eleq2d | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> ( w e. ( p ( ball ` D ) r ) <-> w e. X_ k e. I ( ( p ` k ) ( ball ` E ) r ) ) ) |
| 217 | 216 | biimpa | |- ( ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) /\ w e. ( p ( ball ` D ) r ) ) -> w e. X_ k e. I ( ( p ` k ) ( ball ` E ) r ) ) |
| 218 | vex | |- w e. _V |
|
| 219 | 218 | elixp | |- ( w e. X_ k e. I ( ( p ` k ) ( ball ` E ) r ) <-> ( w Fn I /\ A. k e. I ( w ` k ) e. ( ( p ` k ) ( ball ` E ) r ) ) ) |
| 220 | 219 | simprbi | |- ( w e. X_ k e. I ( ( p ` k ) ( ball ` E ) r ) -> A. k e. I ( w ` k ) e. ( ( p ` k ) ( ball ` E ) r ) ) |
| 221 | 217 220 | syl | |- ( ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) /\ w e. ( p ( ball ` D ) r ) ) -> A. k e. I ( w ` k ) e. ( ( p ` k ) ( ball ` E ) r ) ) |
| 222 | simp-4r | |- ( ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) /\ w e. ( p ( ball ` D ) r ) ) -> k e. I ) |
|
| 223 | rsp | |- ( A. k e. I ( w ` k ) e. ( ( p ` k ) ( ball ` E ) r ) -> ( k e. I -> ( w ` k ) e. ( ( p ` k ) ( ball ` E ) r ) ) ) |
|
| 224 | 221 222 223 | sylc | |- ( ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) /\ w e. ( p ( ball ` D ) r ) ) -> ( w ` k ) e. ( ( p ` k ) ( ball ` E ) r ) ) |
| 225 | 211 224 | sseldd | |- ( ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) /\ w e. ( p ( ball ` D ) r ) ) -> ( w ` k ) e. u ) |
| 226 | 210 225 | ssrabdv | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> ( p ( ball ` D ) r ) C_ { w e. B | ( w ` k ) e. u } ) |
| 227 | 226 188 | sseqtrrdi | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> ( p ( ball ` D ) r ) C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) |
| 228 | eleq2 | |- ( y = ( p ( ball ` D ) r ) -> ( p e. y <-> p e. ( p ( ball ` D ) r ) ) ) |
|
| 229 | sseq1 | |- ( y = ( p ( ball ` D ) r ) -> ( y C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) <-> ( p ( ball ` D ) r ) C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) ) |
|
| 230 | 228 229 | anbi12d | |- ( y = ( p ( ball ` D ) r ) -> ( ( p e. y /\ y C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) <-> ( p e. ( p ( ball ` D ) r ) /\ ( p ( ball ` D ) r ) C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) ) ) |
| 231 | 230 | rspcev | |- ( ( ( p ( ball ` D ) r ) e. ( MetOpen ` D ) /\ ( p e. ( p ( ball ` D ) r ) /\ ( p ( ball ` D ) r ) C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) ) -> E. y e. ( MetOpen ` D ) ( p e. y /\ y C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) ) |
| 232 | 205 208 227 231 | syl12anc | |- ( ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) /\ ( r e. RR+ /\ ( ( p ` k ) ( ball ` E ) r ) C_ u ) ) -> E. y e. ( MetOpen ` D ) ( p e. y /\ y C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) ) |
| 233 | 198 232 | rexlimddv | |- ( ( ( ph /\ k e. I ) /\ ( u e. K /\ ( p e. B /\ ( p ` k ) e. u ) ) ) -> E. y e. ( MetOpen ` D ) ( p e. y /\ y C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) ) |
| 234 | 233 | expr | |- ( ( ( ph /\ k e. I ) /\ u e. K ) -> ( ( p e. B /\ ( p ` k ) e. u ) -> E. y e. ( MetOpen ` D ) ( p e. y /\ y C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) ) ) |
| 235 | 189 234 | biimtrid | |- ( ( ( ph /\ k e. I ) /\ u e. K ) -> ( p e. ( `' ( w e. B |-> ( w ` k ) ) " u ) -> E. y e. ( MetOpen ` D ) ( p e. y /\ y C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) ) ) |
| 236 | 235 | ralrimiv | |- ( ( ( ph /\ k e. I ) /\ u e. K ) -> A. p e. ( `' ( w e. B |-> ( w ` k ) ) " u ) E. y e. ( MetOpen ` D ) ( p e. y /\ y C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) ) |
| 237 | 157 | ad2antrr | |- ( ( ( ph /\ k e. I ) /\ u e. K ) -> ( MetOpen ` D ) e. Top ) |
| 238 | eltop2 | |- ( ( MetOpen ` D ) e. Top -> ( ( `' ( w e. B |-> ( w ` k ) ) " u ) e. ( MetOpen ` D ) <-> A. p e. ( `' ( w e. B |-> ( w ` k ) ) " u ) E. y e. ( MetOpen ` D ) ( p e. y /\ y C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) ) ) |
|
| 239 | 237 238 | syl | |- ( ( ( ph /\ k e. I ) /\ u e. K ) -> ( ( `' ( w e. B |-> ( w ` k ) ) " u ) e. ( MetOpen ` D ) <-> A. p e. ( `' ( w e. B |-> ( w ` k ) ) " u ) E. y e. ( MetOpen ` D ) ( p e. y /\ y C_ ( `' ( w e. B |-> ( w ` k ) ) " u ) ) ) ) |
| 240 | 236 239 | mpbird | |- ( ( ( ph /\ k e. I ) /\ u e. K ) -> ( `' ( w e. B |-> ( w ` k ) ) " u ) e. ( MetOpen ` D ) ) |
| 241 | 184 240 | eqeltrrd | |- ( ( ( ph /\ k e. I ) /\ u e. K ) -> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) " u ) e. ( MetOpen ` D ) ) |
| 242 | 241 | ralrimiva | |- ( ( ph /\ k e. I ) -> A. u e. K ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) " u ) e. ( MetOpen ` D ) ) |
| 243 | 242 159 | raleqtrrdv | |- ( ( ph /\ k e. I ) -> A. u e. ( ( TopOpen o. R ) ` k ) ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) " u ) e. ( MetOpen ` D ) ) |
| 244 | 243 | ralrimiva | |- ( ph -> A. k e. I A. u e. ( ( TopOpen o. R ) ` k ) ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) " u ) e. ( MetOpen ` D ) ) |
| 245 | fveq2 | |- ( k = m -> ( ( TopOpen o. R ) ` k ) = ( ( TopOpen o. R ) ` m ) ) |
|
| 246 | fveq2 | |- ( k = m -> ( w ` k ) = ( w ` m ) ) |
|
| 247 | 246 | mpteq2dv | |- ( k = m -> ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) = ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) ) |
| 248 | 247 | cnveqd | |- ( k = m -> `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) = `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) ) |
| 249 | 248 | imaeq1d | |- ( k = m -> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) " u ) = ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) |
| 250 | 249 | eleq1d | |- ( k = m -> ( ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) " u ) e. ( MetOpen ` D ) <-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) e. ( MetOpen ` D ) ) ) |
| 251 | 245 250 | raleqbidv | |- ( k = m -> ( A. u e. ( ( TopOpen o. R ) ` k ) ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) " u ) e. ( MetOpen ` D ) <-> A. u e. ( ( TopOpen o. R ) ` m ) ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) e. ( MetOpen ` D ) ) ) |
| 252 | 251 | cbvralvw | |- ( A. k e. I A. u e. ( ( TopOpen o. R ) ` k ) ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` k ) ) " u ) e. ( MetOpen ` D ) <-> A. m e. I A. u e. ( ( TopOpen o. R ) ` m ) ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) e. ( MetOpen ` D ) ) |
| 253 | 244 252 | sylib | |- ( ph -> A. m e. I A. u e. ( ( TopOpen o. R ) ` m ) ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) e. ( MetOpen ` D ) ) |
| 254 | eqid | |- ( m e. I , u e. ( ( TopOpen o. R ) ` m ) |-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) = ( m e. I , u e. ( ( TopOpen o. R ) ` m ) |-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) |
|
| 255 | 254 | fmpox | |- ( A. m e. I A. u e. ( ( TopOpen o. R ) ` m ) ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) e. ( MetOpen ` D ) <-> ( m e. I , u e. ( ( TopOpen o. R ) ` m ) |-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) : U_ m e. I ( { m } X. ( ( TopOpen o. R ) ` m ) ) --> ( MetOpen ` D ) ) |
| 256 | 253 255 | sylib | |- ( ph -> ( m e. I , u e. ( ( TopOpen o. R ) ` m ) |-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) : U_ m e. I ( { m } X. ( ( TopOpen o. R ) ` m ) ) --> ( MetOpen ` D ) ) |
| 257 | 256 | frnd | |- ( ph -> ran ( m e. I , u e. ( ( TopOpen o. R ) ` m ) |-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) C_ ( MetOpen ` D ) ) |
| 258 | 180 257 | unssd | |- ( ph -> ( { X_ n e. I U. ( ( TopOpen o. R ) ` n ) } u. ran ( m e. I , u e. ( ( TopOpen o. R ) ` m ) |-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) ) C_ ( MetOpen ` D ) ) |
| 259 | fiss | |- ( ( ( MetOpen ` D ) e. Top /\ ( { X_ n e. I U. ( ( TopOpen o. R ) ` n ) } u. ran ( m e. I , u e. ( ( TopOpen o. R ) ` m ) |-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) ) C_ ( MetOpen ` D ) ) -> ( fi ` ( { X_ n e. I U. ( ( TopOpen o. R ) ` n ) } u. ran ( m e. I , u e. ( ( TopOpen o. R ) ` m ) |-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) ) ) C_ ( fi ` ( MetOpen ` D ) ) ) |
|
| 260 | 157 258 259 | syl2anc | |- ( ph -> ( fi ` ( { X_ n e. I U. ( ( TopOpen o. R ) ` n ) } u. ran ( m e. I , u e. ( ( TopOpen o. R ) ` m ) |-> ( `' ( w e. X_ n e. I U. ( ( TopOpen o. R ) ` n ) |-> ( w ` m ) ) " u ) ) ) ) C_ ( fi ` ( MetOpen ` D ) ) ) |
| 261 | 154 260 | eqsstrd | |- ( ph -> C C_ ( fi ` ( MetOpen ` D ) ) ) |
| 262 | fitop | |- ( ( MetOpen ` D ) e. Top -> ( fi ` ( MetOpen ` D ) ) = ( MetOpen ` D ) ) |
|
| 263 | 157 262 | syl | |- ( ph -> ( fi ` ( MetOpen ` D ) ) = ( MetOpen ` D ) ) |
| 264 | 155 | mopnval | |- ( D e. ( *Met ` B ) -> ( MetOpen ` D ) = ( topGen ` ran ( ball ` D ) ) ) |
| 265 | 21 264 | syl | |- ( ph -> ( MetOpen ` D ) = ( topGen ` ran ( ball ` D ) ) ) |
| 266 | tgdif0 | |- ( topGen ` ( ran ( ball ` D ) \ { (/) } ) ) = ( topGen ` ran ( ball ` D ) ) |
|
| 267 | 265 266 | eqtr4di | |- ( ph -> ( MetOpen ` D ) = ( topGen ` ( ran ( ball ` D ) \ { (/) } ) ) ) |
| 268 | 263 267 | eqtrd | |- ( ph -> ( fi ` ( MetOpen ` D ) ) = ( topGen ` ( ran ( ball ` D ) \ { (/) } ) ) ) |
| 269 | 261 268 | sseqtrd | |- ( ph -> C C_ ( topGen ` ( ran ( ball ` D ) \ { (/) } ) ) ) |
| 270 | 2basgen | |- ( ( ( ran ( ball ` D ) \ { (/) } ) C_ C /\ C C_ ( topGen ` ( ran ( ball ` D ) \ { (/) } ) ) ) -> ( topGen ` ( ran ( ball ` D ) \ { (/) } ) ) = ( topGen ` C ) ) |
|
| 271 | 137 269 270 | syl2anc | |- ( ph -> ( topGen ` ( ran ( ball ` D ) \ { (/) } ) ) = ( topGen ` C ) ) |
| 272 | 19 271 | eqtr4d | |- ( ph -> ( Xt_ ` ( TopOpen o. R ) ) = ( topGen ` ( ran ( ball ` D ) \ { (/) } ) ) ) |
| 273 | 1 2 3 13 7 | prdstopn | |- ( ph -> J = ( Xt_ ` ( TopOpen o. R ) ) ) |
| 274 | 272 273 267 | 3eqtr4d | |- ( ph -> J = ( MetOpen ` D ) ) |