This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgdif0 | ⊢ ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = ( topGen ‘ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif1 | ⊢ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) = ( ( 𝐵 ∩ 𝒫 𝑥 ) ∖ { ∅ } ) | |
| 2 | 1 | unieqi | ⊢ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) = ∪ ( ( 𝐵 ∩ 𝒫 𝑥 ) ∖ { ∅ } ) |
| 3 | unidif0 | ⊢ ∪ ( ( 𝐵 ∩ 𝒫 𝑥 ) ∖ { ∅ } ) = ∪ ( 𝐵 ∩ 𝒫 𝑥 ) | |
| 4 | 2 3 | eqtri | ⊢ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) = ∪ ( 𝐵 ∩ 𝒫 𝑥 ) |
| 5 | 4 | sseq2i | ⊢ ( 𝑥 ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
| 6 | 5 | abbii | ⊢ { 𝑥 ∣ 𝑥 ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) } = { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } |
| 7 | difexg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ { ∅ } ) ∈ V ) | |
| 8 | tgval | ⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = { 𝑥 ∣ 𝑥 ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) } ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐵 ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = { 𝑥 ∣ 𝑥 ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 𝑥 ) } ) |
| 10 | tgval | ⊢ ( 𝐵 ∈ V → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ) | |
| 11 | 6 9 10 | 3eqtr4a | ⊢ ( 𝐵 ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = ( topGen ‘ 𝐵 ) ) |
| 12 | difsnexi | ⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ V → 𝐵 ∈ V ) | |
| 13 | fvprc | ⊢ ( ¬ ( 𝐵 ∖ { ∅ } ) ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = ∅ ) | |
| 14 | 12 13 | nsyl5 | ⊢ ( ¬ 𝐵 ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = ∅ ) |
| 15 | fvprc | ⊢ ( ¬ 𝐵 ∈ V → ( topGen ‘ 𝐵 ) = ∅ ) | |
| 16 | 14 15 | eqtr4d | ⊢ ( ¬ 𝐵 ∈ V → ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = ( topGen ‘ 𝐵 ) ) |
| 17 | 11 16 | pm2.61i | ⊢ ( topGen ‘ ( 𝐵 ∖ { ∅ } ) ) = ( topGen ‘ 𝐵 ) |