This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ball is nonempty iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xbln0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ≠ ∅ ↔ 0 < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) | |
| 2 | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) ) | |
| 3 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( 𝑃 𝐷 𝑥 ) ) | |
| 4 | 3 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( 𝑃 𝐷 𝑥 ) ) |
| 5 | 4 | 3adantl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( 𝑃 𝐷 𝑥 ) ) |
| 6 | 0xr | ⊢ 0 ∈ ℝ* | |
| 7 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ) | |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ) |
| 9 | 8 | 3adantl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ) |
| 10 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ ℝ* ) | |
| 11 | xrlelttr | ⊢ ( ( 0 ∈ ℝ* ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( ( 0 ≤ ( 𝑃 𝐷 𝑥 ) ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) → 0 < 𝑅 ) ) | |
| 12 | 6 9 10 11 | mp3an2i | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 0 ≤ ( 𝑃 𝐷 𝑥 ) ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) → 0 < 𝑅 ) ) |
| 13 | 5 12 | mpand | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝑥 ) < 𝑅 → 0 < 𝑅 ) ) |
| 14 | 13 | expimpd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) → 0 < 𝑅 ) ) |
| 15 | 2 14 | sylbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) → 0 < 𝑅 ) ) |
| 16 | 15 | exlimdv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( ∃ 𝑥 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) → 0 < 𝑅 ) ) |
| 17 | 1 16 | biimtrid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ≠ ∅ → 0 < 𝑅 ) ) |
| 18 | xblcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) | |
| 19 | 18 | ne0d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ≠ ∅ ) |
| 20 | 19 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 0 < 𝑅 ) ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ≠ ∅ ) |
| 21 | 20 | expr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 0 < 𝑅 → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ≠ ∅ ) ) |
| 22 | 21 | 3impa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 0 < 𝑅 → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ≠ ∅ ) ) |
| 23 | 17 22 | impbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ≠ ∅ ↔ 0 < 𝑅 ) ) |