This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed product structure is an extended metric space when the index set is finite. (Although the extended metric is still valid when the index set is infinite, it no longer agrees with the product topology, which is not metrizable in any case.) (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prdsxms.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| Assertion | prdsxms | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝑌 ∈ ∞MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsxms.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | simp1 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝑆 ∈ 𝑊 ) | |
| 3 | simp2 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝐼 ∈ Fin ) | |
| 4 | eqid | ⊢ ( dist ‘ 𝑌 ) = ( dist ‘ 𝑌 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 6 | simp3 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝑅 : 𝐼 ⟶ ∞MetSp ) | |
| 7 | 1 2 3 4 5 6 | prdsxmslem1 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( dist ‘ 𝑌 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ) |
| 8 | ssid | ⊢ ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 ) | |
| 9 | xmetres2 | ⊢ ( ( ( dist ‘ 𝑌 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ∧ ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 ) ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ) |
| 11 | eqid | ⊢ ( TopOpen ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) | |
| 12 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) | |
| 13 | eqid | ⊢ ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) = ( ( dist ‘ ( 𝑅 ‘ 𝑘 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) | |
| 14 | eqid | ⊢ ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑘 ) ) | |
| 15 | eqid | ⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑘 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑘 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑘 ) ) ∧ 𝑥 = X 𝑘 ∈ 𝐼 ( 𝑔 ‘ 𝑘 ) ) } | |
| 16 | 1 2 3 4 5 6 11 12 13 14 15 | prdsxmslem2 | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( TopOpen ‘ 𝑌 ) = ( MetOpen ‘ ( dist ‘ 𝑌 ) ) ) |
| 17 | xmetf | ⊢ ( ( dist ‘ 𝑌 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) → ( dist ‘ 𝑌 ) : ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ⟶ ℝ* ) | |
| 18 | ffn | ⊢ ( ( dist ‘ 𝑌 ) : ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ⟶ ℝ* → ( dist ‘ 𝑌 ) Fn ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) | |
| 19 | fnresdm | ⊢ ( ( dist ‘ 𝑌 ) Fn ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) = ( dist ‘ 𝑌 ) ) | |
| 20 | 7 17 18 19 | 4syl | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) = ( dist ‘ 𝑌 ) ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( MetOpen ‘ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ) = ( MetOpen ‘ ( dist ‘ 𝑌 ) ) ) |
| 22 | 16 21 | eqtr4d | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → ( TopOpen ‘ 𝑌 ) = ( MetOpen ‘ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ) ) |
| 23 | eqid | ⊢ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) = ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) | |
| 24 | 11 5 23 | isxms2 | ⊢ ( 𝑌 ∈ ∞MetSp ↔ ( ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑌 ) ) ∧ ( TopOpen ‘ 𝑌 ) = ( MetOpen ‘ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ) ) ) |
| 25 | 10 22 24 | sylanbrc | ⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝑌 ∈ ∞MetSp ) |