This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ssab

Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion ssab ( 𝐴 ⊆ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )

Proof

Step Hyp Ref Expression
1 abid2 { 𝑥𝑥𝐴 } = 𝐴
2 1 sseq1i ( { 𝑥𝑥𝐴 } ⊆ { 𝑥𝜑 } ↔ 𝐴 ⊆ { 𝑥𝜑 } )
3 ss2ab ( { 𝑥𝑥𝐴 } ⊆ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
4 2 3 bitr3i ( 𝐴 ⊆ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )