This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | mopni2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | mopni | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ∃ 𝑦 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) |
| 3 | 1 | mopnss | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ 𝑋 ) |
| 4 | 3 | sselda | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝑋 ) |
| 5 | blssex | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) | |
| 6 | 5 | adantlr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) |
| 7 | 4 6 | syldan | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) ∧ 𝑃 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) |
| 8 | 7 | 3impa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) |
| 9 | 2 8 | mpbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) |