This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994) Avoid ax-10 , ax-11 . (Revised by Wolf Lammen, 25-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spcgv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | spcegv | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝜓 → ∃ 𝑥 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcgv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elisset | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 3 | 1 | biimprcd | ⊢ ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 4 | 3 | eximdv | ⊢ ( 𝜓 → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝜑 ) ) |
| 5 | 2 4 | syl5com | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝜓 → ∃ 𝑥 𝜑 ) ) |