This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdstopn.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdstopn.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdstopn.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdstopn.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | ||
| prdstopn.o | ⊢ 𝑂 = ( TopOpen ‘ 𝑌 ) | ||
| Assertion | prdstopn | ⊢ ( 𝜑 → 𝑂 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdstopn.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdstopn.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 3 | prdstopn.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 4 | prdstopn.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | |
| 5 | prdstopn.o | ⊢ 𝑂 = ( TopOpen ‘ 𝑌 ) | |
| 6 | fnex | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ V ) | |
| 7 | 4 3 6 | syl2anc | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 8 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 9 | eqidd | ⊢ ( 𝜑 → dom 𝑅 = dom 𝑅 ) | |
| 10 | eqid | ⊢ ( TopSet ‘ 𝑌 ) = ( TopSet ‘ 𝑌 ) | |
| 11 | 1 2 7 8 9 10 | prdstset | ⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 12 | topnfn | ⊢ TopOpen Fn V | |
| 13 | dffn2 | ⊢ ( 𝑅 Fn 𝐼 ↔ 𝑅 : 𝐼 ⟶ V ) | |
| 14 | 4 13 | sylib | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ V ) |
| 15 | fnfco | ⊢ ( ( TopOpen Fn V ∧ 𝑅 : 𝐼 ⟶ V ) → ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) | |
| 16 | 12 14 15 | sylancr | ⊢ ( 𝜑 → ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) |
| 17 | eqid | ⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } | |
| 18 | 17 | ptval | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( TopOpen ∘ 𝑅 ) Fn 𝐼 ) → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 19 | 3 16 18 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 20 | 19 | unieqd | ⊢ ( 𝜑 → ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ∪ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 21 | fvco2 | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝑦 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) | |
| 22 | 4 21 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 23 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 24 | eqid | ⊢ ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) ) = ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 25 | 23 24 | topnval | ⊢ ( ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) ) ↾t ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 26 | restsspw | ⊢ ( ( TopSet ‘ ( 𝑅 ‘ 𝑦 ) ) ↾t ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ⊆ 𝒫 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 27 | 25 26 | eqsstrri | ⊢ ( TopOpen ‘ ( 𝑅 ‘ 𝑦 ) ) ⊆ 𝒫 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 28 | 22 27 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ⊆ 𝒫 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 29 | 28 | sseld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) → ( 𝑔 ‘ 𝑦 ) ∈ 𝒫 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 30 | fvex | ⊢ ( 𝑔 ‘ 𝑦 ) ∈ V | |
| 31 | 30 | elpw | ⊢ ( ( 𝑔 ‘ 𝑦 ) ∈ 𝒫 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ↔ ( 𝑔 ‘ 𝑦 ) ⊆ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 32 | 29 31 | imbitrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) → ( 𝑔 ‘ 𝑦 ) ⊆ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 33 | 32 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ⊆ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 34 | simpl2 | ⊢ ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) | |
| 35 | 33 34 | impel | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ⊆ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 36 | ss2ixp | ⊢ ( ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ⊆ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) → X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑦 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ⊆ X 𝑦 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 38 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) ) → 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) | |
| 39 | 1 8 2 3 4 | prdsbas2 | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = X 𝑦 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) ) → ( Base ‘ 𝑌 ) = X 𝑦 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 41 | 37 38 40 | 3sstr4d | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) ) → 𝑥 ⊆ ( Base ‘ 𝑌 ) ) |
| 42 | 41 | ex | ⊢ ( 𝜑 → ( ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) → 𝑥 ⊆ ( Base ‘ 𝑌 ) ) ) |
| 43 | 42 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) → 𝑥 ⊆ ( Base ‘ 𝑌 ) ) ) |
| 44 | velpw | ⊢ ( 𝑥 ∈ 𝒫 ( Base ‘ 𝑌 ) ↔ 𝑥 ⊆ ( Base ‘ 𝑌 ) ) | |
| 45 | 43 44 | imbitrrdi | ⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) → 𝑥 ∈ 𝒫 ( Base ‘ 𝑌 ) ) ) |
| 46 | 45 | abssdv | ⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ⊆ 𝒫 ( Base ‘ 𝑌 ) ) |
| 47 | fvex | ⊢ ( Base ‘ 𝑌 ) ∈ V | |
| 48 | 47 | pwex | ⊢ 𝒫 ( Base ‘ 𝑌 ) ∈ V |
| 49 | 48 | ssex | ⊢ ( { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ⊆ 𝒫 ( Base ‘ 𝑌 ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ∈ V ) |
| 50 | unitg | ⊢ ( { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ∈ V → ∪ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) = ∪ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) | |
| 51 | 46 49 50 | 3syl | ⊢ ( 𝜑 → ∪ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) = ∪ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) |
| 52 | 20 51 | eqtrd | ⊢ ( 𝜑 → ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ∪ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ) |
| 53 | sspwuni | ⊢ ( { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ⊆ 𝒫 ( Base ‘ 𝑌 ) ↔ ∪ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ⊆ ( Base ‘ 𝑌 ) ) | |
| 54 | 46 53 | sylib | ⊢ ( 𝜑 → ∪ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ∈ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐼 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( TopOpen ∘ 𝑅 ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐼 ( 𝑔 ‘ 𝑦 ) ) } ⊆ ( Base ‘ 𝑌 ) ) |
| 55 | 52 54 | eqsstrd | ⊢ ( 𝜑 → ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ ( Base ‘ 𝑌 ) ) |
| 56 | sspwuni | ⊢ ( ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ 𝒫 ( Base ‘ 𝑌 ) ↔ ∪ ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ ( Base ‘ 𝑌 ) ) | |
| 57 | 55 56 | sylibr | ⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⊆ 𝒫 ( Base ‘ 𝑌 ) ) |
| 58 | 11 57 | eqsstrd | ⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) ⊆ 𝒫 ( Base ‘ 𝑌 ) ) |
| 59 | 8 10 | topnid | ⊢ ( ( TopSet ‘ 𝑌 ) ⊆ 𝒫 ( Base ‘ 𝑌 ) → ( TopSet ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) ) |
| 60 | 58 59 | syl | ⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) ) |
| 61 | 60 5 | eqtr4di | ⊢ ( 𝜑 → ( TopSet ‘ 𝑌 ) = 𝑂 ) |
| 62 | 61 11 | eqtr3d | ⊢ ( 𝜑 → 𝑂 = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |