This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsbasmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbasmpt.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsbasmpt.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | ||
| Assertion | prdsbas2 | ⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsbasmpt.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsbasmpt.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsbasmpt.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | prdsbasmpt.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | |
| 6 | fnex | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ V ) | |
| 7 | 5 4 6 | syl2anc | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 8 | 5 | fndmd | ⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
| 9 | 1 3 7 2 8 | prdsbas | ⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |