This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The basis for the product topology can also be written as the set of finite intersections of "cylinder sets", the preimages of projections into one factor from open sets in the factor. (We have to add X itself to the list because if A is empty we get ( fi(/) ) = (/) while B = { (/) } .) (Contributed by Mario Carneiro, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| ptbasfi.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | ||
| Assertion | ptbasfi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐵 = ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptbas.1 | ⊢ 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } | |
| 2 | ptbasfi.2 | ⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | |
| 3 | 1 | elpt | ⊢ ( 𝑠 ∈ 𝐵 ↔ ∃ ℎ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ) ) |
| 4 | df-3an | ⊢ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 5 | simprr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) | |
| 6 | disjdif2 | ⊢ ( ( 𝐴 ∩ 𝑚 ) = ∅ → ( 𝐴 ∖ 𝑚 ) = 𝐴 ) | |
| 7 | 6 | raleqdv | ⊢ ( ( 𝐴 ∩ 𝑚 ) = ∅ → ( ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 8 | 7 | biimpac | ⊢ ( ( ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐴 ∩ 𝑚 ) = ∅ ) → ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) |
| 9 | ixpeq2 | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐴 ∩ 𝑚 ) = ∅ ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) ) |
| 11 | fveq2 | ⊢ ( 𝑛 = 𝑦 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 12 | 11 | unieqd | ⊢ ( 𝑛 = 𝑦 → ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) |
| 13 | 12 | cbvixpv | ⊢ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) |
| 14 | 2 13 | eqtri | ⊢ 𝑋 = X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) |
| 15 | 10 14 | eqtr4di | ⊢ ( ( ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐴 ∩ 𝑚 ) = ∅ ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = 𝑋 ) |
| 16 | 5 15 | sylan | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) = ∅ ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = 𝑋 ) |
| 17 | ssv | ⊢ 𝑋 ⊆ V | |
| 18 | iineq1 | ⊢ ( ( 𝐴 ∩ 𝑚 ) = ∅ → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) = ∩ 𝑛 ∈ ∅ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) | |
| 19 | 0iin | ⊢ ∩ 𝑛 ∈ ∅ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) = V | |
| 20 | 18 19 | eqtrdi | ⊢ ( ( 𝐴 ∩ 𝑚 ) = ∅ → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) = V ) |
| 21 | 17 20 | sseqtrrid | ⊢ ( ( 𝐴 ∩ 𝑚 ) = ∅ → 𝑋 ⊆ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) = ∅ ) → 𝑋 ⊆ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) |
| 23 | dfss2 | ⊢ ( 𝑋 ⊆ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ↔ ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) = 𝑋 ) | |
| 24 | 22 23 | sylib | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) = ∅ ) → ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) = 𝑋 ) |
| 25 | 16 24 | eqtr4d | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) = ∅ ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) ) |
| 26 | simplll | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ) | |
| 27 | inss1 | ⊢ ( 𝐴 ∩ 𝑚 ) ⊆ 𝐴 | |
| 28 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) | |
| 29 | 27 28 | sselid | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → 𝑛 ∈ 𝐴 ) |
| 30 | fveq2 | ⊢ ( 𝑦 = 𝑛 → ( ℎ ‘ 𝑦 ) = ( ℎ ‘ 𝑛 ) ) | |
| 31 | fveq2 | ⊢ ( 𝑦 = 𝑛 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 32 | 30 31 | eleq12d | ⊢ ( 𝑦 = 𝑛 → ( ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ↔ ( ℎ ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
| 33 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) | |
| 34 | 33 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 35 | 32 34 29 | rspcdva | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( ℎ ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 36 | 14 | ptpjpre1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑛 ∈ 𝐴 ∧ ( ℎ ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) = X 𝑦 ∈ 𝐴 if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 37 | 26 29 35 36 | syl12anc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) = X 𝑦 ∈ 𝐴 if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 38 | 37 | adantlr | ⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) = X 𝑦 ∈ 𝐴 if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 39 | 38 | iineq2dv | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) X 𝑦 ∈ 𝐴 if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 40 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) | |
| 41 | cnvimass | ⊢ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ dom ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) | |
| 42 | eqid | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) | |
| 43 | 42 | dmmptss | ⊢ dom ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) ⊆ 𝑋 |
| 44 | 41 43 | sstri | ⊢ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ 𝑋 |
| 45 | 44 14 | sseqtri | ⊢ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) |
| 46 | 45 | rgenw | ⊢ ∀ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) |
| 47 | r19.2z | ⊢ ( ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) ) | |
| 48 | 40 46 47 | sylancl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) ) |
| 49 | iinss | ⊢ ( ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) ) | |
| 50 | 48 49 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ X 𝑦 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑦 ) ) |
| 51 | 50 14 | sseqtrrdi | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 52 | sseqin2 | ⊢ ( ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ 𝑋 ↔ ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) | |
| 53 | 51 52 | sylib | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) |
| 54 | 33 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 55 | ssralv | ⊢ ( ( 𝐴 ∩ 𝑚 ) ⊆ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ∀ 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 56 | 27 55 | ax-mp | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ∀ 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 57 | elssuni | ⊢ ( ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ( ℎ ‘ 𝑦 ) ⊆ ∪ ( 𝐹 ‘ 𝑦 ) ) | |
| 58 | iffalse | ⊢ ( ¬ 𝑦 = 𝑛 → if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) = ∪ ( 𝐹 ‘ 𝑦 ) ) | |
| 59 | 58 | sseq2d | ⊢ ( ¬ 𝑦 = 𝑛 → ( ( ℎ ‘ 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ℎ ‘ 𝑦 ) ⊆ ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 60 | 57 59 | syl5ibrcom | ⊢ ( ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ( ¬ 𝑦 = 𝑛 → ( ℎ ‘ 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 61 | ssid | ⊢ ( ℎ ‘ 𝑦 ) ⊆ ( ℎ ‘ 𝑦 ) | |
| 62 | iftrue | ⊢ ( 𝑦 = 𝑛 → if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) = ( ℎ ‘ 𝑛 ) ) | |
| 63 | 62 30 | eqtr4d | ⊢ ( 𝑦 = 𝑛 → if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) = ( ℎ ‘ 𝑦 ) ) |
| 64 | 61 63 | sseqtrrid | ⊢ ( 𝑦 = 𝑛 → ( ℎ ‘ 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 65 | 60 64 | pm2.61d2 | ⊢ ( ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ( ℎ ‘ 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 66 | 65 | ralrimivw | ⊢ ( ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ∀ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ℎ ‘ 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 67 | ssiin | ⊢ ( ( ℎ ‘ 𝑦 ) ⊆ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ℎ ‘ 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 68 | 66 67 | sylibr | ⊢ ( ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ( ℎ ‘ 𝑦 ) ⊆ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 69 | 68 | adantl | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) ∧ ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) → ( ℎ ‘ 𝑦 ) ⊆ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 70 | 62 | equcoms | ⊢ ( 𝑛 = 𝑦 → if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) = ( ℎ ‘ 𝑛 ) ) |
| 71 | fveq2 | ⊢ ( 𝑛 = 𝑦 → ( ℎ ‘ 𝑛 ) = ( ℎ ‘ 𝑦 ) ) | |
| 72 | 70 71 | eqtrd | ⊢ ( 𝑛 = 𝑦 → if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) = ( ℎ ‘ 𝑦 ) ) |
| 73 | 72 | sseq1d | ⊢ ( 𝑛 = 𝑦 → ( if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( ℎ ‘ 𝑦 ) ↔ ( ℎ ‘ 𝑦 ) ⊆ ( ℎ ‘ 𝑦 ) ) ) |
| 74 | 73 | rspcev | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) ∧ ( ℎ ‘ 𝑦 ) ⊆ ( ℎ ‘ 𝑦 ) ) → ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( ℎ ‘ 𝑦 ) ) |
| 75 | 61 74 | mpan2 | ⊢ ( 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) → ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( ℎ ‘ 𝑦 ) ) |
| 76 | iinss | ⊢ ( ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( ℎ ‘ 𝑦 ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( ℎ ‘ 𝑦 ) ) | |
| 77 | 75 76 | syl | ⊢ ( 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( ℎ ‘ 𝑦 ) ) |
| 78 | 77 | adantr | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) ∧ ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( ℎ ‘ 𝑦 ) ) |
| 79 | 69 78 | eqssd | ⊢ ( ( 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) ∧ ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) → ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 80 | 79 | ralimiaa | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) → ∀ 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 81 | 54 56 80 | 3syl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → ∀ 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 82 | eldifn | ⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) → ¬ 𝑦 ∈ 𝑚 ) | |
| 83 | 82 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ¬ 𝑦 ∈ 𝑚 ) |
| 84 | inss2 | ⊢ ( 𝐴 ∩ 𝑚 ) ⊆ 𝑚 | |
| 85 | simpr | ⊢ ( ( ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) | |
| 86 | 84 85 | sselid | ⊢ ( ( ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → 𝑛 ∈ 𝑚 ) |
| 87 | eleq1 | ⊢ ( 𝑦 = 𝑛 → ( 𝑦 ∈ 𝑚 ↔ 𝑛 ∈ 𝑚 ) ) | |
| 88 | 86 87 | syl5ibrcom | ⊢ ( ( ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( 𝑦 = 𝑛 → 𝑦 ∈ 𝑚 ) ) |
| 89 | 83 88 | mtod | ⊢ ( ( ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ¬ 𝑦 = 𝑛 ) |
| 90 | 89 58 | syl | ⊢ ( ( ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) = ∪ ( 𝐹 ‘ 𝑦 ) ) |
| 91 | 90 | iineq2dv | ⊢ ( ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ∪ ( 𝐹 ‘ 𝑦 ) ) |
| 92 | iinconst | ⊢ ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ∪ ( 𝐹 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) | |
| 93 | 92 | adantr | ⊢ ( ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ∪ ( 𝐹 ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) |
| 94 | 91 93 | eqtr2d | ⊢ ( ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ) → ∪ ( 𝐹 ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 95 | eqeq1 | ⊢ ( ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) → ( ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ↔ ∪ ( 𝐹 ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 96 | 94 95 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ) → ( ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) → ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 97 | 96 | ralimdva | ⊢ ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ → ( ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) → ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 98 | 5 97 | mpan9 | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 99 | inundif | ⊢ ( ( 𝐴 ∩ 𝑚 ) ∪ ( 𝐴 ∖ 𝑚 ) ) = 𝐴 | |
| 100 | 99 | raleqi | ⊢ ( ∀ 𝑦 ∈ ( ( 𝐴 ∩ 𝑚 ) ∪ ( 𝐴 ∖ 𝑚 ) ) ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 101 | ralunb | ⊢ ( ∀ 𝑦 ∈ ( ( 𝐴 ∩ 𝑚 ) ∪ ( 𝐴 ∖ 𝑚 ) ) ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 102 | 100 101 | bitr3i | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝐴 ∩ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 103 | 81 98 102 | sylanbrc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 104 | ixpeq2 | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = X 𝑦 ∈ 𝐴 ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 105 | 103 104 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = X 𝑦 ∈ 𝐴 ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 106 | ixpiin | ⊢ ( ( 𝐴 ∩ 𝑚 ) ≠ ∅ → X 𝑦 ∈ 𝐴 ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) X 𝑦 ∈ 𝐴 if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 107 | 106 | adantl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → X 𝑦 ∈ 𝐴 ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) X 𝑦 ∈ 𝐴 if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 108 | 105 107 | eqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) X 𝑦 ∈ 𝐴 if ( 𝑦 = 𝑛 , ( ℎ ‘ 𝑛 ) , ∪ ( 𝐹 ‘ 𝑦 ) ) ) |
| 109 | 39 53 108 | 3eqtr4rd | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐴 ∩ 𝑚 ) ≠ ∅ ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) ) |
| 110 | 25 109 | pm2.61dane | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) = ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) ) |
| 111 | ixpexg | ⊢ ( ∀ 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ∈ V → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ∈ V ) | |
| 112 | fvex | ⊢ ( 𝐹 ‘ 𝑛 ) ∈ V | |
| 113 | 112 | uniex | ⊢ ∪ ( 𝐹 ‘ 𝑛 ) ∈ V |
| 114 | 113 | a1i | ⊢ ( 𝑛 ∈ 𝐴 → ∪ ( 𝐹 ‘ 𝑛 ) ∈ V ) |
| 115 | 111 114 | mprg | ⊢ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ∈ V |
| 116 | 2 115 | eqeltri | ⊢ 𝑋 ∈ V |
| 117 | 116 | mptex | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) ∈ V |
| 118 | 117 | cnvex | ⊢ ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) ∈ V |
| 119 | 118 | imaex | ⊢ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ∈ V |
| 120 | 119 | dfiin2 | ⊢ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) = ∩ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } |
| 121 | inteq | ⊢ ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } = ∅ → ∩ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } = ∩ ∅ ) | |
| 122 | 120 121 | eqtrid | ⊢ ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } = ∅ → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) = ∩ ∅ ) |
| 123 | int0 | ⊢ ∩ ∅ = V | |
| 124 | 122 123 | eqtrdi | ⊢ ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } = ∅ → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) = V ) |
| 125 | 124 | ineq2d | ⊢ ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } = ∅ → ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) = ( 𝑋 ∩ V ) ) |
| 126 | inv1 | ⊢ ( 𝑋 ∩ V ) = 𝑋 | |
| 127 | 125 126 | eqtrdi | ⊢ ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } = ∅ → ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) = 𝑋 ) |
| 128 | 127 | adantl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } = ∅ ) → ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) = 𝑋 ) |
| 129 | snex | ⊢ { 𝑋 } ∈ V | |
| 130 | 1 | ptbas | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐵 ∈ TopBases ) |
| 131 | 1 2 | ptpjpre2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝐵 ) |
| 132 | 131 | ralrimivva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∀ 𝑘 ∈ 𝐴 ∀ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝐵 ) |
| 133 | eqid | ⊢ ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) | |
| 134 | 133 | fmpox | ⊢ ( ∀ 𝑘 ∈ 𝐴 ∀ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝐵 ↔ ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) : ∪ 𝑘 ∈ 𝐴 ( { 𝑘 } × ( 𝐹 ‘ 𝑘 ) ) ⟶ 𝐵 ) |
| 135 | 132 134 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) : ∪ 𝑘 ∈ 𝐴 ( { 𝑘 } × ( 𝐹 ‘ 𝑘 ) ) ⟶ 𝐵 ) |
| 136 | 135 | frnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ⊆ 𝐵 ) |
| 137 | 130 136 | ssexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) |
| 138 | unexg | ⊢ ( ( { 𝑋 } ∈ V ∧ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) → ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ) | |
| 139 | 129 137 138 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ) |
| 140 | ssfii | ⊢ ( ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V → ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) | |
| 141 | 139 140 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 142 | 141 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 143 | ssun1 | ⊢ { 𝑋 } ⊆ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) | |
| 144 | 116 | snss | ⊢ ( 𝑋 ∈ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↔ { 𝑋 } ⊆ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 145 | 143 144 | mpbir | ⊢ 𝑋 ∈ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 146 | 145 | a1i | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → 𝑋 ∈ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 147 | 142 146 | sseldd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → 𝑋 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 148 | 147 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } = ∅ ) → 𝑋 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 149 | 128 148 | eqeltrd | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } = ∅ ) → ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 150 | 139 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ) |
| 151 | nfv | ⊢ Ⅎ 𝑛 ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 152 | nfcv | ⊢ Ⅎ 𝑛 𝐴 | |
| 153 | nfcv | ⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑘 ) | |
| 154 | nfixp1 | ⊢ Ⅎ 𝑛 X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) | |
| 155 | 2 154 | nfcxfr | ⊢ Ⅎ 𝑛 𝑋 |
| 156 | nfcv | ⊢ Ⅎ 𝑛 ( 𝑤 ‘ 𝑘 ) | |
| 157 | 155 156 | nfmpt | ⊢ Ⅎ 𝑛 ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) |
| 158 | 157 | nfcnv | ⊢ Ⅎ 𝑛 ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) |
| 159 | nfcv | ⊢ Ⅎ 𝑛 𝑢 | |
| 160 | 158 159 | nfima | ⊢ Ⅎ 𝑛 ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) |
| 161 | 152 153 160 | nfmpo | ⊢ Ⅎ 𝑛 ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 162 | 161 | nfrn | ⊢ Ⅎ 𝑛 ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 163 | 162 | nfcri | ⊢ Ⅎ 𝑛 𝑧 ∈ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 164 | df-ov | ⊢ ( 𝑛 ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ( ℎ ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ‘ 〈 𝑛 , ( ℎ ‘ 𝑛 ) 〉 ) | |
| 165 | 119 | a1i | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ∈ V ) |
| 166 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝑤 ‘ 𝑘 ) = ( 𝑤 ‘ 𝑛 ) ) | |
| 167 | 166 | mpteq2dv | ⊢ ( 𝑘 = 𝑛 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) ) |
| 168 | 167 | cnveqd | ⊢ ( 𝑘 = 𝑛 → ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) = ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) ) |
| 169 | 168 | imaeq1d | ⊢ ( 𝑘 = 𝑛 → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ 𝑢 ) ) |
| 170 | imaeq2 | ⊢ ( 𝑢 = ( ℎ ‘ 𝑛 ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) | |
| 171 | 169 170 | sylan9eq | ⊢ ( ( 𝑘 = 𝑛 ∧ 𝑢 = ( ℎ ‘ 𝑛 ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) |
| 172 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 173 | 171 172 133 | ovmpox | ⊢ ( ( 𝑛 ∈ 𝐴 ∧ ( ℎ ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ∈ V ) → ( 𝑛 ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ( ℎ ‘ 𝑛 ) ) = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) |
| 174 | 29 35 165 173 | syl3anc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( 𝑛 ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ( ℎ ‘ 𝑛 ) ) = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) |
| 175 | 164 174 | eqtr3id | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ‘ 〈 𝑛 , ( ℎ ‘ 𝑛 ) 〉 ) = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) |
| 176 | 135 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) : ∪ 𝑘 ∈ 𝐴 ( { 𝑘 } × ( 𝐹 ‘ 𝑘 ) ) ⟶ 𝐵 ) |
| 177 | 176 | ffnd | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) Fn ∪ 𝑘 ∈ 𝐴 ( { 𝑘 } × ( 𝐹 ‘ 𝑘 ) ) ) |
| 178 | opeliunxp | ⊢ ( 〈 𝑛 , ( ℎ ‘ 𝑛 ) 〉 ∈ ∪ 𝑛 ∈ 𝐴 ( { 𝑛 } × ( 𝐹 ‘ 𝑛 ) ) ↔ ( 𝑛 ∈ 𝐴 ∧ ( ℎ ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 179 | 29 35 178 | sylanbrc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → 〈 𝑛 , ( ℎ ‘ 𝑛 ) 〉 ∈ ∪ 𝑛 ∈ 𝐴 ( { 𝑛 } × ( 𝐹 ‘ 𝑛 ) ) ) |
| 180 | sneq | ⊢ ( 𝑛 = 𝑘 → { 𝑛 } = { 𝑘 } ) | |
| 181 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 182 | 180 181 | xpeq12d | ⊢ ( 𝑛 = 𝑘 → ( { 𝑛 } × ( 𝐹 ‘ 𝑛 ) ) = ( { 𝑘 } × ( 𝐹 ‘ 𝑘 ) ) ) |
| 183 | 182 | cbviunv | ⊢ ∪ 𝑛 ∈ 𝐴 ( { 𝑛 } × ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑘 ∈ 𝐴 ( { 𝑘 } × ( 𝐹 ‘ 𝑘 ) ) |
| 184 | 179 183 | eleqtrdi | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → 〈 𝑛 , ( ℎ ‘ 𝑛 ) 〉 ∈ ∪ 𝑘 ∈ 𝐴 ( { 𝑘 } × ( 𝐹 ‘ 𝑘 ) ) ) |
| 185 | fnfvelrn | ⊢ ( ( ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) Fn ∪ 𝑘 ∈ 𝐴 ( { 𝑘 } × ( 𝐹 ‘ 𝑘 ) ) ∧ 〈 𝑛 , ( ℎ ‘ 𝑛 ) 〉 ∈ ∪ 𝑘 ∈ 𝐴 ( { 𝑘 } × ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ‘ 〈 𝑛 , ( ℎ ‘ 𝑛 ) 〉 ) ∈ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) | |
| 186 | 177 184 185 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ‘ 〈 𝑛 , ( ℎ ‘ 𝑛 ) 〉 ) ∈ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 187 | 175 186 | eqeltrrd | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ∈ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 188 | eleq1 | ⊢ ( 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) → ( 𝑧 ∈ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ↔ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ∈ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) | |
| 189 | 187 188 | syl5ibrcom | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ) → ( 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) → 𝑧 ∈ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 190 | 189 | ex | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) → ( 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) → 𝑧 ∈ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 191 | 151 163 190 | rexlimd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ( ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) → 𝑧 ∈ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 192 | 191 | abssdv | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ⊆ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
| 193 | ssun2 | ⊢ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ⊆ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) | |
| 194 | 192 193 | sstrdi | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ⊆ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 195 | 194 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ⊆ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 196 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) | |
| 197 | simplrl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → 𝑚 ∈ Fin ) | |
| 198 | ssfi | ⊢ ( ( 𝑚 ∈ Fin ∧ ( 𝐴 ∩ 𝑚 ) ⊆ 𝑚 ) → ( 𝐴 ∩ 𝑚 ) ∈ Fin ) | |
| 199 | 197 84 198 | sylancl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → ( 𝐴 ∩ 𝑚 ) ∈ Fin ) |
| 200 | abrexfi | ⊢ ( ( 𝐴 ∩ 𝑚 ) ∈ Fin → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ∈ Fin ) | |
| 201 | 199 200 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ∈ Fin ) |
| 202 | elfir | ⊢ ( ( ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ∧ ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ⊆ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ∈ Fin ) ) → ∩ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) | |
| 203 | 150 195 196 201 202 | syl13anc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → ∩ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 204 | 120 203 | eqeltrid | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 205 | elssuni | ⊢ ( ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ ∪ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) | |
| 206 | 204 205 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ ∪ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 207 | fiuni | ⊢ ( ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V → ∪ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) = ∪ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) | |
| 208 | 139 207 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∪ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) = ∪ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 209 | 116 | pwid | ⊢ 𝑋 ∈ 𝒫 𝑋 |
| 210 | 209 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝑋 ∈ 𝒫 𝑋 ) |
| 211 | 210 | snssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → { 𝑋 } ⊆ 𝒫 𝑋 ) |
| 212 | 1 | ptuni2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = ∪ 𝐵 ) |
| 213 | 2 212 | eqtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝑋 = ∪ 𝐵 ) |
| 214 | eqimss2 | ⊢ ( 𝑋 = ∪ 𝐵 → ∪ 𝐵 ⊆ 𝑋 ) | |
| 215 | 213 214 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∪ 𝐵 ⊆ 𝑋 ) |
| 216 | sspwuni | ⊢ ( 𝐵 ⊆ 𝒫 𝑋 ↔ ∪ 𝐵 ⊆ 𝑋 ) | |
| 217 | 215 216 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐵 ⊆ 𝒫 𝑋 ) |
| 218 | 136 217 | sstrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ⊆ 𝒫 𝑋 ) |
| 219 | 211 218 | unssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝒫 𝑋 ) |
| 220 | sspwuni | ⊢ ( ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝒫 𝑋 ↔ ∪ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝑋 ) | |
| 221 | 219 220 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∪ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝑋 ) |
| 222 | elssuni | ⊢ ( 𝑋 ∈ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑋 ⊆ ∪ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) | |
| 223 | 145 222 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝑋 ⊆ ∪ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
| 224 | 221 223 | eqssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∪ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) = 𝑋 ) |
| 225 | 208 224 | eqtr3d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ∪ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) = 𝑋 ) |
| 226 | 225 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → ∪ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) = 𝑋 ) |
| 227 | 206 226 | sseqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 228 | 227 52 | sylib | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) = ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) |
| 229 | 228 204 | eqeltrd | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) 𝑧 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) } ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 230 | 149 229 | pm2.61dane | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 ∩ ∩ 𝑛 ∈ ( 𝐴 ∩ 𝑚 ) ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑛 ) ) “ ( ℎ ‘ 𝑛 ) ) ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 231 | 110 230 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 232 | 231 | rexlimdvaa | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) → ( ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
| 233 | 232 | impr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 234 | 4 233 | sylan2b | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 235 | eleq1 | ⊢ ( 𝑠 = X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) → ( 𝑠 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ↔ X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) | |
| 236 | 234 235 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) ∧ ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑠 = X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) → 𝑠 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
| 237 | 236 | expimpd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ( ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ) → 𝑠 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
| 238 | 237 | exlimdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∃ ℎ ( ( ℎ Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑚 ) ( ℎ ‘ 𝑦 ) = ∪ ( 𝐹 ‘ 𝑦 ) ) ∧ 𝑠 = X 𝑦 ∈ 𝐴 ( ℎ ‘ 𝑦 ) ) → 𝑠 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
| 239 | 3 238 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( 𝑠 ∈ 𝐵 → 𝑠 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
| 240 | 239 | ssrdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐵 ⊆ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
| 241 | 1 | ptbasid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ∈ 𝐵 ) |
| 242 | 2 241 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝑋 ∈ 𝐵 ) |
| 243 | 242 | snssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → { 𝑋 } ⊆ 𝐵 ) |
| 244 | 243 136 | unssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝐵 ) |
| 245 | fiss | ⊢ ( ( 𝐵 ∈ TopBases ∧ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝐵 ) → ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ⊆ ( fi ‘ 𝐵 ) ) | |
| 246 | 130 244 245 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ⊆ ( fi ‘ 𝐵 ) ) |
| 247 | 1 | ptbasin2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ 𝐵 ) = 𝐵 ) |
| 248 | 246 247 | sseqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ⊆ 𝐵 ) |
| 249 | 240 248 | eqssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → 𝐵 = ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |