This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ptbasfi

Description: The basis for the product topology can also be written as the set of finite intersections of "cylinder sets", the preimages of projections into one factor from open sets in the factor. (We have to add X itself to the list because if A is empty we get ( fi(/) ) = (/) while B = { (/) } .) (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypotheses ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
ptbasfi.2 𝑋 = X 𝑛𝐴 ( 𝐹𝑛 )
Assertion ptbasfi ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐵 = ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 ptbas.1 𝐵 = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑔𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑧 ) ( 𝑔𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑥 = X 𝑦𝐴 ( 𝑔𝑦 ) ) }
2 ptbasfi.2 𝑋 = X 𝑛𝐴 ( 𝐹𝑛 )
3 1 elpt ( 𝑠𝐵 ↔ ∃ ( ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑠 = X 𝑦𝐴 ( 𝑦 ) ) )
4 df-3an ( ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ↔ ( ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) )
5 simprr ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) )
6 disjdif2 ( ( 𝐴𝑚 ) = ∅ → ( 𝐴𝑚 ) = 𝐴 )
7 6 raleqdv ( ( 𝐴𝑚 ) = ∅ → ( ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ↔ ∀ 𝑦𝐴 ( 𝑦 ) = ( 𝐹𝑦 ) ) )
8 7 biimpac ( ( ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ∧ ( 𝐴𝑚 ) = ∅ ) → ∀ 𝑦𝐴 ( 𝑦 ) = ( 𝐹𝑦 ) )
9 ixpeq2 ( ∀ 𝑦𝐴 ( 𝑦 ) = ( 𝐹𝑦 ) → X 𝑦𝐴 ( 𝑦 ) = X 𝑦𝐴 ( 𝐹𝑦 ) )
10 8 9 syl ( ( ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ∧ ( 𝐴𝑚 ) = ∅ ) → X 𝑦𝐴 ( 𝑦 ) = X 𝑦𝐴 ( 𝐹𝑦 ) )
11 fveq2 ( 𝑛 = 𝑦 → ( 𝐹𝑛 ) = ( 𝐹𝑦 ) )
12 11 unieqd ( 𝑛 = 𝑦 ( 𝐹𝑛 ) = ( 𝐹𝑦 ) )
13 12 cbvixpv X 𝑛𝐴 ( 𝐹𝑛 ) = X 𝑦𝐴 ( 𝐹𝑦 )
14 2 13 eqtri 𝑋 = X 𝑦𝐴 ( 𝐹𝑦 )
15 10 14 eqtr4di ( ( ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ∧ ( 𝐴𝑚 ) = ∅ ) → X 𝑦𝐴 ( 𝑦 ) = 𝑋 )
16 5 15 sylan ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) = ∅ ) → X 𝑦𝐴 ( 𝑦 ) = 𝑋 )
17 ssv 𝑋 ⊆ V
18 iineq1 ( ( 𝐴𝑚 ) = ∅ → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) = 𝑛 ∈ ∅ ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) )
19 0iin 𝑛 ∈ ∅ ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) = V
20 18 19 eqtrdi ( ( 𝐴𝑚 ) = ∅ → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) = V )
21 17 20 sseqtrrid ( ( 𝐴𝑚 ) = ∅ → 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) )
22 21 adantl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) = ∅ ) → 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) )
23 dfss2 ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ↔ ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) = 𝑋 )
24 22 23 sylib ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) = ∅ ) → ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) = 𝑋 )
25 16 24 eqtr4d ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) = ∅ ) → X 𝑦𝐴 ( 𝑦 ) = ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) )
26 simplll ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) )
27 inss1 ( 𝐴𝑚 ) ⊆ 𝐴
28 simpr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → 𝑛 ∈ ( 𝐴𝑚 ) )
29 27 28 sselid ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → 𝑛𝐴 )
30 fveq2 ( 𝑦 = 𝑛 → ( 𝑦 ) = ( 𝑛 ) )
31 fveq2 ( 𝑦 = 𝑛 → ( 𝐹𝑦 ) = ( 𝐹𝑛 ) )
32 30 31 eleq12d ( 𝑦 = 𝑛 → ( ( 𝑦 ) ∈ ( 𝐹𝑦 ) ↔ ( 𝑛 ) ∈ ( 𝐹𝑛 ) ) )
33 simprr ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) → ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) )
34 33 ad2antrr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) )
35 32 34 29 rspcdva ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( 𝑛 ) ∈ ( 𝐹𝑛 ) )
36 14 ptpjpre1 ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑛𝐴 ∧ ( 𝑛 ) ∈ ( 𝐹𝑛 ) ) ) → ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) = X 𝑦𝐴 if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
37 26 29 35 36 syl12anc ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) = X 𝑦𝐴 if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
38 37 adantlr ( ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) = X 𝑦𝐴 if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
39 38 iineq2dv ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) = 𝑛 ∈ ( 𝐴𝑚 ) X 𝑦𝐴 if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
40 simpr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → ( 𝐴𝑚 ) ≠ ∅ )
41 cnvimass ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ dom ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) )
42 eqid ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) = ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) )
43 42 dmmptss dom ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) ⊆ 𝑋
44 41 43 sstri ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ 𝑋
45 44 14 sseqtri ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ X 𝑦𝐴 ( 𝐹𝑦 )
46 45 rgenw 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ X 𝑦𝐴 ( 𝐹𝑦 )
47 r19.2z ( ( ( 𝐴𝑚 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ X 𝑦𝐴 ( 𝐹𝑦 ) ) → ∃ 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ X 𝑦𝐴 ( 𝐹𝑦 ) )
48 40 46 47 sylancl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → ∃ 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ X 𝑦𝐴 ( 𝐹𝑦 ) )
49 iinss ( ∃ 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ X 𝑦𝐴 ( 𝐹𝑦 ) → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ X 𝑦𝐴 ( 𝐹𝑦 ) )
50 48 49 syl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ X 𝑦𝐴 ( 𝐹𝑦 ) )
51 50 14 sseqtrrdi ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ 𝑋 )
52 sseqin2 ( 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ 𝑋 ↔ ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) = 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) )
53 51 52 sylib ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) = 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) )
54 33 ad2antrr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) )
55 ssralv ( ( 𝐴𝑚 ) ⊆ 𝐴 → ( ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) → ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) )
56 27 55 ax-mp ( ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) → ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) ∈ ( 𝐹𝑦 ) )
57 elssuni ( ( 𝑦 ) ∈ ( 𝐹𝑦 ) → ( 𝑦 ) ⊆ ( 𝐹𝑦 ) )
58 iffalse ( ¬ 𝑦 = 𝑛 → if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) = ( 𝐹𝑦 ) )
59 58 sseq2d ( ¬ 𝑦 = 𝑛 → ( ( 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ↔ ( 𝑦 ) ⊆ ( 𝐹𝑦 ) ) )
60 57 59 syl5ibrcom ( ( 𝑦 ) ∈ ( 𝐹𝑦 ) → ( ¬ 𝑦 = 𝑛 → ( 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ) )
61 ssid ( 𝑦 ) ⊆ ( 𝑦 )
62 iftrue ( 𝑦 = 𝑛 → if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) = ( 𝑛 ) )
63 62 30 eqtr4d ( 𝑦 = 𝑛 → if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) = ( 𝑦 ) )
64 61 63 sseqtrrid ( 𝑦 = 𝑛 → ( 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
65 60 64 pm2.61d2 ( ( 𝑦 ) ∈ ( 𝐹𝑦 ) → ( 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
66 65 ralrimivw ( ( 𝑦 ) ∈ ( 𝐹𝑦 ) → ∀ 𝑛 ∈ ( 𝐴𝑚 ) ( 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
67 ssiin ( ( 𝑦 ) ⊆ 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ↔ ∀ 𝑛 ∈ ( 𝐴𝑚 ) ( 𝑦 ) ⊆ if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
68 66 67 sylibr ( ( 𝑦 ) ∈ ( 𝐹𝑦 ) → ( 𝑦 ) ⊆ 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
69 68 adantl ( ( 𝑦 ∈ ( 𝐴𝑚 ) ∧ ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) → ( 𝑦 ) ⊆ 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
70 62 equcoms ( 𝑛 = 𝑦 → if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) = ( 𝑛 ) )
71 fveq2 ( 𝑛 = 𝑦 → ( 𝑛 ) = ( 𝑦 ) )
72 70 71 eqtrd ( 𝑛 = 𝑦 → if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) = ( 𝑦 ) )
73 72 sseq1d ( 𝑛 = 𝑦 → ( if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ⊆ ( 𝑦 ) ↔ ( 𝑦 ) ⊆ ( 𝑦 ) ) )
74 73 rspcev ( ( 𝑦 ∈ ( 𝐴𝑚 ) ∧ ( 𝑦 ) ⊆ ( 𝑦 ) ) → ∃ 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ⊆ ( 𝑦 ) )
75 61 74 mpan2 ( 𝑦 ∈ ( 𝐴𝑚 ) → ∃ 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ⊆ ( 𝑦 ) )
76 iinss ( ∃ 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ⊆ ( 𝑦 ) → 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ⊆ ( 𝑦 ) )
77 75 76 syl ( 𝑦 ∈ ( 𝐴𝑚 ) → 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ⊆ ( 𝑦 ) )
78 77 adantr ( ( 𝑦 ∈ ( 𝐴𝑚 ) ∧ ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) → 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ⊆ ( 𝑦 ) )
79 69 78 eqssd ( ( 𝑦 ∈ ( 𝐴𝑚 ) ∧ ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) → ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
80 79 ralimiaa ( ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) ∈ ( 𝐹𝑦 ) → ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
81 54 56 80 3syl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
82 eldifn ( 𝑦 ∈ ( 𝐴𝑚 ) → ¬ 𝑦𝑚 )
83 82 ad2antlr ( ( ( ( 𝐴𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ¬ 𝑦𝑚 )
84 inss2 ( 𝐴𝑚 ) ⊆ 𝑚
85 simpr ( ( ( ( 𝐴𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → 𝑛 ∈ ( 𝐴𝑚 ) )
86 84 85 sselid ( ( ( ( 𝐴𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → 𝑛𝑚 )
87 eleq1 ( 𝑦 = 𝑛 → ( 𝑦𝑚𝑛𝑚 ) )
88 86 87 syl5ibrcom ( ( ( ( 𝐴𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( 𝑦 = 𝑛𝑦𝑚 ) )
89 83 88 mtod ( ( ( ( 𝐴𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ¬ 𝑦 = 𝑛 )
90 89 58 syl ( ( ( ( 𝐴𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴𝑚 ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) = ( 𝐹𝑦 ) )
91 90 iineq2dv ( ( ( 𝐴𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴𝑚 ) ) → 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) = 𝑛 ∈ ( 𝐴𝑚 ) ( 𝐹𝑦 ) )
92 iinconst ( ( 𝐴𝑚 ) ≠ ∅ → 𝑛 ∈ ( 𝐴𝑚 ) ( 𝐹𝑦 ) = ( 𝐹𝑦 ) )
93 92 adantr ( ( ( 𝐴𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴𝑚 ) ) → 𝑛 ∈ ( 𝐴𝑚 ) ( 𝐹𝑦 ) = ( 𝐹𝑦 ) )
94 91 93 eqtr2d ( ( ( 𝐴𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴𝑚 ) ) → ( 𝐹𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
95 eqeq1 ( ( 𝑦 ) = ( 𝐹𝑦 ) → ( ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ↔ ( 𝐹𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ) )
96 94 95 syl5ibrcom ( ( ( 𝐴𝑚 ) ≠ ∅ ∧ 𝑦 ∈ ( 𝐴𝑚 ) ) → ( ( 𝑦 ) = ( 𝐹𝑦 ) → ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ) )
97 96 ralimdva ( ( 𝐴𝑚 ) ≠ ∅ → ( ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) → ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ) )
98 5 97 mpan9 ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
99 inundif ( ( 𝐴𝑚 ) ∪ ( 𝐴𝑚 ) ) = 𝐴
100 99 raleqi ( ∀ 𝑦 ∈ ( ( 𝐴𝑚 ) ∪ ( 𝐴𝑚 ) ) ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ↔ ∀ 𝑦𝐴 ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
101 ralunb ( ∀ 𝑦 ∈ ( ( 𝐴𝑚 ) ∪ ( 𝐴𝑚 ) ) ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ) )
102 100 101 bitr3i ( ∀ 𝑦𝐴 ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) ) )
103 81 98 102 sylanbrc ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → ∀ 𝑦𝐴 ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
104 ixpeq2 ( ∀ 𝑦𝐴 ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) → X 𝑦𝐴 ( 𝑦 ) = X 𝑦𝐴 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
105 103 104 syl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → X 𝑦𝐴 ( 𝑦 ) = X 𝑦𝐴 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
106 ixpiin ( ( 𝐴𝑚 ) ≠ ∅ → X 𝑦𝐴 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) = 𝑛 ∈ ( 𝐴𝑚 ) X 𝑦𝐴 if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
107 106 adantl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → X 𝑦𝐴 𝑛 ∈ ( 𝐴𝑚 ) if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) = 𝑛 ∈ ( 𝐴𝑚 ) X 𝑦𝐴 if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
108 105 107 eqtrd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → X 𝑦𝐴 ( 𝑦 ) = 𝑛 ∈ ( 𝐴𝑚 ) X 𝑦𝐴 if ( 𝑦 = 𝑛 , ( 𝑛 ) , ( 𝐹𝑦 ) ) )
109 39 53 108 3eqtr4rd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ ( 𝐴𝑚 ) ≠ ∅ ) → X 𝑦𝐴 ( 𝑦 ) = ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) )
110 25 109 pm2.61dane ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → X 𝑦𝐴 ( 𝑦 ) = ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) )
111 ixpexg ( ∀ 𝑛𝐴 ( 𝐹𝑛 ) ∈ V → X 𝑛𝐴 ( 𝐹𝑛 ) ∈ V )
112 fvex ( 𝐹𝑛 ) ∈ V
113 112 uniex ( 𝐹𝑛 ) ∈ V
114 113 a1i ( 𝑛𝐴 ( 𝐹𝑛 ) ∈ V )
115 111 114 mprg X 𝑛𝐴 ( 𝐹𝑛 ) ∈ V
116 2 115 eqeltri 𝑋 ∈ V
117 116 mptex ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) ∈ V
118 117 cnvex ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) ∈ V
119 118 imaex ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ∈ V
120 119 dfiin2 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) = { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) }
121 inteq ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } = ∅ → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } = ∅ )
122 120 121 eqtrid ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } = ∅ → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) = ∅ )
123 int0 ∅ = V
124 122 123 eqtrdi ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } = ∅ → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) = V )
125 124 ineq2d ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } = ∅ → ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) = ( 𝑋 ∩ V ) )
126 inv1 ( 𝑋 ∩ V ) = 𝑋
127 125 126 eqtrdi ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } = ∅ → ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) = 𝑋 )
128 127 adantl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } = ∅ ) → ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) = 𝑋 )
129 snex { 𝑋 } ∈ V
130 1 ptbas ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐵 ∈ TopBases )
131 1 2 ptpjpre2 ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( 𝑘𝐴𝑢 ∈ ( 𝐹𝑘 ) ) ) → ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ∈ 𝐵 )
132 131 ralrimivva ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ∀ 𝑘𝐴𝑢 ∈ ( 𝐹𝑘 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ∈ 𝐵 )
133 eqid ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) = ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) )
134 133 fmpox ( ∀ 𝑘𝐴𝑢 ∈ ( 𝐹𝑘 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ∈ 𝐵 ↔ ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) : 𝑘𝐴 ( { 𝑘 } × ( 𝐹𝑘 ) ) ⟶ 𝐵 )
135 132 134 sylib ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) : 𝑘𝐴 ( { 𝑘 } × ( 𝐹𝑘 ) ) ⟶ 𝐵 )
136 135 frnd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ⊆ 𝐵 )
137 130 136 ssexd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ∈ V )
138 unexg ( ( { 𝑋 } ∈ V ∧ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ∈ V ) → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ∈ V )
139 129 137 138 sylancr ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ∈ V )
140 ssfii ( ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ∈ V → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
141 139 140 syl ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
142 141 ad2antrr ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
143 ssun1 { 𝑋 } ⊆ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) )
144 116 snss ( 𝑋 ∈ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ↔ { 𝑋 } ⊆ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) )
145 143 144 mpbir 𝑋 ∈ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) )
146 145 a1i ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → 𝑋 ∈ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) )
147 142 146 sseldd ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → 𝑋 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
148 147 adantr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } = ∅ ) → 𝑋 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
149 128 148 eqeltrd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } = ∅ ) → ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
150 139 ad3antrrr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ∈ V )
151 nfv 𝑛 ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) )
152 nfcv 𝑛 𝐴
153 nfcv 𝑛 ( 𝐹𝑘 )
154 nfixp1 𝑛 X 𝑛𝐴 ( 𝐹𝑛 )
155 2 154 nfcxfr 𝑛 𝑋
156 nfcv 𝑛 ( 𝑤𝑘 )
157 155 156 nfmpt 𝑛 ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) )
158 157 nfcnv 𝑛 ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) )
159 nfcv 𝑛 𝑢
160 158 159 nfima 𝑛 ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 )
161 152 153 160 nfmpo 𝑛 ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) )
162 161 nfrn 𝑛 ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) )
163 162 nfcri 𝑛 𝑧 ∈ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) )
164 df-ov ( 𝑛 ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ( 𝑛 ) ) = ( ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ‘ ⟨ 𝑛 , ( 𝑛 ) ⟩ )
165 119 a1i ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ∈ V )
166 fveq2 ( 𝑘 = 𝑛 → ( 𝑤𝑘 ) = ( 𝑤𝑛 ) )
167 166 mpteq2dv ( 𝑘 = 𝑛 → ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) = ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) )
168 167 cnveqd ( 𝑘 = 𝑛 ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) = ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) )
169 168 imaeq1d ( 𝑘 = 𝑛 → ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ 𝑢 ) )
170 imaeq2 ( 𝑢 = ( 𝑛 ) → ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ 𝑢 ) = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) )
171 169 170 sylan9eq ( ( 𝑘 = 𝑛𝑢 = ( 𝑛 ) ) → ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) )
172 fveq2 ( 𝑘 = 𝑛 → ( 𝐹𝑘 ) = ( 𝐹𝑛 ) )
173 171 172 133 ovmpox ( ( 𝑛𝐴 ∧ ( 𝑛 ) ∈ ( 𝐹𝑛 ) ∧ ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ∈ V ) → ( 𝑛 ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ( 𝑛 ) ) = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) )
174 29 35 165 173 syl3anc ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( 𝑛 ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ( 𝑛 ) ) = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) )
175 164 174 eqtr3id ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ‘ ⟨ 𝑛 , ( 𝑛 ) ⟩ ) = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) )
176 135 ad3antrrr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) : 𝑘𝐴 ( { 𝑘 } × ( 𝐹𝑘 ) ) ⟶ 𝐵 )
177 176 ffnd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) Fn 𝑘𝐴 ( { 𝑘 } × ( 𝐹𝑘 ) ) )
178 opeliunxp ( ⟨ 𝑛 , ( 𝑛 ) ⟩ ∈ 𝑛𝐴 ( { 𝑛 } × ( 𝐹𝑛 ) ) ↔ ( 𝑛𝐴 ∧ ( 𝑛 ) ∈ ( 𝐹𝑛 ) ) )
179 29 35 178 sylanbrc ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ⟨ 𝑛 , ( 𝑛 ) ⟩ ∈ 𝑛𝐴 ( { 𝑛 } × ( 𝐹𝑛 ) ) )
180 sneq ( 𝑛 = 𝑘 → { 𝑛 } = { 𝑘 } )
181 fveq2 ( 𝑛 = 𝑘 → ( 𝐹𝑛 ) = ( 𝐹𝑘 ) )
182 180 181 xpeq12d ( 𝑛 = 𝑘 → ( { 𝑛 } × ( 𝐹𝑛 ) ) = ( { 𝑘 } × ( 𝐹𝑘 ) ) )
183 182 cbviunv 𝑛𝐴 ( { 𝑛 } × ( 𝐹𝑛 ) ) = 𝑘𝐴 ( { 𝑘 } × ( 𝐹𝑘 ) )
184 179 183 eleqtrdi ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ⟨ 𝑛 , ( 𝑛 ) ⟩ ∈ 𝑘𝐴 ( { 𝑘 } × ( 𝐹𝑘 ) ) )
185 fnfvelrn ( ( ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) Fn 𝑘𝐴 ( { 𝑘 } × ( 𝐹𝑘 ) ) ∧ ⟨ 𝑛 , ( 𝑛 ) ⟩ ∈ 𝑘𝐴 ( { 𝑘 } × ( 𝐹𝑘 ) ) ) → ( ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ‘ ⟨ 𝑛 , ( 𝑛 ) ⟩ ) ∈ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) )
186 177 184 185 syl2anc ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ‘ ⟨ 𝑛 , ( 𝑛 ) ⟩ ) ∈ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) )
187 175 186 eqeltrrd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ∈ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) )
188 eleq1 ( 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) → ( 𝑧 ∈ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ↔ ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ∈ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) )
189 187 188 syl5ibrcom ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ 𝑛 ∈ ( 𝐴𝑚 ) ) → ( 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) → 𝑧 ∈ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) )
190 189 ex ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → ( 𝑛 ∈ ( 𝐴𝑚 ) → ( 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) → 𝑧 ∈ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
191 151 163 190 rexlimd ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → ( ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) → 𝑧 ∈ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) )
192 191 abssdv ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ⊆ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) )
193 ssun2 ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ⊆ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) )
194 192 193 sstrdi ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ⊆ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) )
195 194 adantr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ⊆ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) )
196 simpr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ )
197 simplrl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → 𝑚 ∈ Fin )
198 ssfi ( ( 𝑚 ∈ Fin ∧ ( 𝐴𝑚 ) ⊆ 𝑚 ) → ( 𝐴𝑚 ) ∈ Fin )
199 197 84 198 sylancl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → ( 𝐴𝑚 ) ∈ Fin )
200 abrexfi ( ( 𝐴𝑚 ) ∈ Fin → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ∈ Fin )
201 199 200 syl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ∈ Fin )
202 elfir ( ( ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ∈ V ∧ ( { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ⊆ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ∈ Fin ) ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
203 150 195 196 201 202 syl13anc ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
204 120 203 eqeltrid ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
205 elssuni ( 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
206 204 205 syl ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
207 fiuni ( ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ∈ V → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) = ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
208 139 207 syl ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) = ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
209 116 pwid 𝑋 ∈ 𝒫 𝑋
210 209 a1i ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝑋 ∈ 𝒫 𝑋 )
211 210 snssd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → { 𝑋 } ⊆ 𝒫 𝑋 )
212 1 ptuni2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → X 𝑛𝐴 ( 𝐹𝑛 ) = 𝐵 )
213 2 212 eqtrid ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝑋 = 𝐵 )
214 eqimss2 ( 𝑋 = 𝐵 𝐵𝑋 )
215 213 214 syl ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐵𝑋 )
216 sspwuni ( 𝐵 ⊆ 𝒫 𝑋 𝐵𝑋 )
217 215 216 sylibr ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐵 ⊆ 𝒫 𝑋 )
218 136 217 sstrd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ⊆ 𝒫 𝑋 )
219 211 218 unssd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝒫 𝑋 )
220 sspwuni ( ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝒫 𝑋 ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝑋 )
221 219 220 sylib ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝑋 )
222 elssuni ( 𝑋 ∈ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) → 𝑋 ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) )
223 145 222 mp1i ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝑋 ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) )
224 221 223 eqssd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) = 𝑋 )
225 208 224 eqtr3d ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) = 𝑋 )
226 225 ad3antrrr ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) = 𝑋 )
227 206 226 sseqtrd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ⊆ 𝑋 )
228 227 52 sylib ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) = 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) )
229 228 204 eqeltrd ( ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) ∧ { 𝑧 ∣ ∃ 𝑛 ∈ ( 𝐴𝑚 ) 𝑧 = ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) } ≠ ∅ ) → ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
230 149 229 pm2.61dane ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → ( 𝑋 𝑛 ∈ ( 𝐴𝑚 ) ( ( 𝑤𝑋 ↦ ( 𝑤𝑛 ) ) “ ( 𝑛 ) ) ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
231 110 230 eqeltrd ( ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) ∧ ( 𝑚 ∈ Fin ∧ ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → X 𝑦𝐴 ( 𝑦 ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
232 231 rexlimdvaa ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ) → ( ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) → X 𝑦𝐴 ( 𝑦 ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) ) )
233 232 impr ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → X 𝑦𝐴 ( 𝑦 ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
234 4 233 sylan2b ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → X 𝑦𝐴 ( 𝑦 ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
235 eleq1 ( 𝑠 = X 𝑦𝐴 ( 𝑦 ) → ( 𝑠 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) ↔ X 𝑦𝐴 ( 𝑦 ) ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) ) )
236 234 235 syl5ibrcom ( ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) ∧ ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ) → ( 𝑠 = X 𝑦𝐴 ( 𝑦 ) → 𝑠 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) ) )
237 236 expimpd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( ( ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑠 = X 𝑦𝐴 ( 𝑦 ) ) → 𝑠 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) ) )
238 237 exlimdv ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( ∃ ( ( Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑦 ) ∈ ( 𝐹𝑦 ) ∧ ∃ 𝑚 ∈ Fin ∀ 𝑦 ∈ ( 𝐴𝑚 ) ( 𝑦 ) = ( 𝐹𝑦 ) ) ∧ 𝑠 = X 𝑦𝐴 ( 𝑦 ) ) → 𝑠 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) ) )
239 3 238 biimtrid ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( 𝑠𝐵𝑠 ∈ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) ) )
240 239 ssrdv ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐵 ⊆ ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )
241 1 ptbasid ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → X 𝑛𝐴 ( 𝐹𝑛 ) ∈ 𝐵 )
242 2 241 eqeltrid ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝑋𝐵 )
243 242 snssd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → { 𝑋 } ⊆ 𝐵 )
244 243 136 unssd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝐵 )
245 fiss ( ( 𝐵 ∈ TopBases ∧ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ⊆ 𝐵 ) → ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) ⊆ ( fi ‘ 𝐵 ) )
246 130 244 245 syl2anc ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) ⊆ ( fi ‘ 𝐵 ) )
247 1 ptbasin2 ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ 𝐵 ) = 𝐵 )
248 246 247 sseqtrd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) ⊆ 𝐵 )
249 240 248 eqssd ( ( 𝐴𝑉𝐹 : 𝐴 ⟶ Top ) → 𝐵 = ( fi ‘ ( { 𝑋 } ∪ ran ( 𝑘𝐴 , 𝑢 ∈ ( 𝐹𝑘 ) ↦ ( ( 𝑤𝑋 ↦ ( 𝑤𝑘 ) ) “ 𝑢 ) ) ) ) )