This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvixpv.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| Assertion | cbvixpv | ⊢ X 𝑥 ∈ 𝐴 𝐵 = X 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvixpv.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| 2 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ‘ 𝑥 ) = ( 𝑧 ‘ 𝑦 ) ) | |
| 3 | 2 1 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑧 ‘ 𝑦 ) ∈ 𝐶 ) ) |
| 4 | 3 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ‘ 𝑦 ) ∈ 𝐶 ) |
| 5 | 4 | anbi2i | ⊢ ( ( 𝑧 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ‘ 𝑦 ) ∈ 𝐶 ) ) |
| 6 | 5 | abbii | ⊢ { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) } = { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ‘ 𝑦 ) ∈ 𝐶 ) } |
| 7 | dfixp | ⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) } | |
| 8 | dfixp | ⊢ X 𝑦 ∈ 𝐴 𝐶 = { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ‘ 𝑦 ) ∈ 𝐶 ) } | |
| 9 | 6 7 8 | 3eqtr4i | ⊢ X 𝑥 ∈ 𝐴 𝐵 = X 𝑦 ∈ 𝐴 𝐶 |