This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fco2 | ⊢ ( ( ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fco | ⊢ ( ( ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) | |
| 2 | frn | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ran 𝐺 ⊆ 𝐵 ) | |
| 3 | cores | ⊢ ( ran 𝐺 ⊆ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ∘ 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ∘ 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ∘ 𝐺 ) = ( 𝐹 ∘ 𝐺 ) ) |
| 6 | 5 | feq1d | ⊢ ( ( ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( ( ( 𝐹 ↾ 𝐵 ) ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ↔ ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) ) |
| 7 | 1 6 | mpbid | ⊢ ( ( ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |