This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absorption law oaabs is also a property of higher powers of _om . (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaabs2 | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( 𝐴 +o 𝐵 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | ⊢ ( 𝐴 ∈ ( ω ↑o 𝐶 ) → ¬ ( ω ↑o 𝐶 ) = ∅ ) | |
| 2 | fnoe | ⊢ ↑o Fn ( On × On ) | |
| 3 | fndm | ⊢ ( ↑o Fn ( On × On ) → dom ↑o = ( On × On ) ) | |
| 4 | 2 3 | ax-mp | ⊢ dom ↑o = ( On × On ) |
| 5 | 4 | ndmov | ⊢ ( ¬ ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ↑o 𝐶 ) = ∅ ) |
| 6 | 1 5 | nsyl2 | ⊢ ( 𝐴 ∈ ( ω ↑o 𝐶 ) → ( ω ∈ On ∧ 𝐶 ∈ On ) ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( ω ∈ On ∧ 𝐶 ∈ On ) ) |
| 8 | oecl | ⊢ ( ( ω ∈ On ∧ 𝐶 ∈ On ) → ( ω ↑o 𝐶 ) ∈ On ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( ω ↑o 𝐶 ) ∈ On ) |
| 10 | simplr | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → 𝐵 ∈ On ) | |
| 11 | simpr | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( ω ↑o 𝐶 ) ⊆ 𝐵 ) | |
| 12 | oawordeu | ⊢ ( ( ( ( ω ↑o 𝐶 ) ∈ On ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ∃! 𝑥 ∈ On ( ( ω ↑o 𝐶 ) +o 𝑥 ) = 𝐵 ) | |
| 13 | 9 10 11 12 | syl21anc | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ∃! 𝑥 ∈ On ( ( ω ↑o 𝐶 ) +o 𝑥 ) = 𝐵 ) |
| 14 | reurex | ⊢ ( ∃! 𝑥 ∈ On ( ( ω ↑o 𝐶 ) +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ( ω ↑o 𝐶 ) +o 𝑥 ) = 𝐵 ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ∃ 𝑥 ∈ On ( ( ω ↑o 𝐶 ) +o 𝑥 ) = 𝐵 ) |
| 16 | simpll | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → 𝐴 ∈ ( ω ↑o 𝐶 ) ) | |
| 17 | onelon | ⊢ ( ( ( ω ↑o 𝐶 ) ∈ On ∧ 𝐴 ∈ ( ω ↑o 𝐶 ) ) → 𝐴 ∈ On ) | |
| 18 | 9 16 17 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → 𝐴 ∈ On ) |
| 19 | 18 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → 𝐴 ∈ On ) |
| 20 | 9 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ω ↑o 𝐶 ) ∈ On ) |
| 21 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → 𝑥 ∈ On ) | |
| 22 | oaass | ⊢ ( ( 𝐴 ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ( ω ↑o 𝐶 ) ) +o 𝑥 ) = ( 𝐴 +o ( ( ω ↑o 𝐶 ) +o 𝑥 ) ) ) | |
| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ( ω ↑o 𝐶 ) ) +o 𝑥 ) = ( 𝐴 +o ( ( ω ↑o 𝐶 ) +o 𝑥 ) ) ) |
| 24 | 7 | simprd | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → 𝐶 ∈ On ) |
| 25 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 26 | 24 25 | syl | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → Ord 𝐶 ) |
| 27 | ordzsl | ⊢ ( Ord 𝐶 ↔ ( 𝐶 = ∅ ∨ ∃ 𝑥 ∈ On 𝐶 = suc 𝑥 ∨ Lim 𝐶 ) ) | |
| 28 | 26 27 | sylib | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( 𝐶 = ∅ ∨ ∃ 𝑥 ∈ On 𝐶 = suc 𝑥 ∨ Lim 𝐶 ) ) |
| 29 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝐶 = ∅ ) → 𝐴 ∈ ( ω ↑o 𝐶 ) ) | |
| 30 | oveq2 | ⊢ ( 𝐶 = ∅ → ( ω ↑o 𝐶 ) = ( ω ↑o ∅ ) ) | |
| 31 | 7 | simpld | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ω ∈ On ) |
| 32 | oe0 | ⊢ ( ω ∈ On → ( ω ↑o ∅ ) = 1o ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( ω ↑o ∅ ) = 1o ) |
| 34 | 30 33 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝐶 = ∅ ) → ( ω ↑o 𝐶 ) = 1o ) |
| 35 | 29 34 | eleqtrd | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝐶 = ∅ ) → 𝐴 ∈ 1o ) |
| 36 | el1o | ⊢ ( 𝐴 ∈ 1o ↔ 𝐴 = ∅ ) | |
| 37 | 35 36 | sylib | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝐶 = ∅ ) → 𝐴 = ∅ ) |
| 38 | 37 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝐶 = ∅ ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ( ∅ +o ( ω ↑o 𝐶 ) ) ) |
| 39 | 9 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝐶 = ∅ ) → ( ω ↑o 𝐶 ) ∈ On ) |
| 40 | oa0r | ⊢ ( ( ω ↑o 𝐶 ) ∈ On → ( ∅ +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) | |
| 41 | 39 40 | syl | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝐶 = ∅ ) → ( ∅ +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
| 42 | 38 41 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝐶 = ∅ ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
| 43 | 42 | ex | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( 𝐶 = ∅ → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) ) |
| 44 | 31 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → ω ∈ On ) |
| 45 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → 𝑥 ∈ On ) | |
| 46 | oecl | ⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ↑o 𝑥 ) ∈ On ) | |
| 47 | 44 45 46 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → ( ω ↑o 𝑥 ) ∈ On ) |
| 48 | limom | ⊢ Lim ω | |
| 49 | 44 48 | jctir | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → ( ω ∈ On ∧ Lim ω ) ) |
| 50 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → 𝐴 ∈ ( ω ↑o 𝐶 ) ) | |
| 51 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → 𝐶 = suc 𝑥 ) | |
| 52 | 51 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → ( ω ↑o 𝐶 ) = ( ω ↑o suc 𝑥 ) ) |
| 53 | oesuc | ⊢ ( ( ω ∈ On ∧ 𝑥 ∈ On ) → ( ω ↑o suc 𝑥 ) = ( ( ω ↑o 𝑥 ) ·o ω ) ) | |
| 54 | 44 45 53 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → ( ω ↑o suc 𝑥 ) = ( ( ω ↑o 𝑥 ) ·o ω ) ) |
| 55 | 52 54 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → ( ω ↑o 𝐶 ) = ( ( ω ↑o 𝑥 ) ·o ω ) ) |
| 56 | 50 55 | eleqtrd | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o ω ) ) |
| 57 | omordlim | ⊢ ( ( ( ( ω ↑o 𝑥 ) ∈ On ∧ ( ω ∈ On ∧ Lim ω ) ) ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o ω ) ) → ∃ 𝑦 ∈ ω 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) | |
| 58 | 47 49 56 57 | syl21anc | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → ∃ 𝑦 ∈ ω 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) |
| 59 | 47 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( ω ↑o 𝑥 ) ∈ On ) |
| 60 | nnon | ⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) | |
| 61 | 60 | ad2antrl | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → 𝑦 ∈ On ) |
| 62 | omcl | ⊢ ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On ) | |
| 63 | 59 61 62 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On ) |
| 64 | eloni | ⊢ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On → Ord ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → Ord ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) |
| 66 | simprr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) | |
| 67 | ordelss | ⊢ ( ( Ord ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) → 𝐴 ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) | |
| 68 | 65 66 67 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → 𝐴 ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) |
| 69 | 18 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → 𝐴 ∈ On ) |
| 70 | 9 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( ω ↑o 𝐶 ) ∈ On ) |
| 71 | oawordri | ⊢ ( ( 𝐴 ∈ On ∧ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ∈ On ∧ ( ω ↑o 𝐶 ) ∈ On ) → ( 𝐴 ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝐶 ) ) ) ) | |
| 72 | 69 63 70 71 | syl3anc | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( 𝐴 ⊆ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝐶 ) ) ) ) |
| 73 | 68 72 | mpd | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) ⊆ ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝐶 ) ) ) |
| 74 | 44 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ω ∈ On ) |
| 75 | odi | ⊢ ( ( ( ω ↑o 𝑥 ) ∈ On ∧ 𝑦 ∈ On ∧ ω ∈ On ) → ( ( ω ↑o 𝑥 ) ·o ( 𝑦 +o ω ) ) = ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ( ω ↑o 𝑥 ) ·o ω ) ) ) | |
| 76 | 59 61 74 75 | syl3anc | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( ( ω ↑o 𝑥 ) ·o ( 𝑦 +o ω ) ) = ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ( ω ↑o 𝑥 ) ·o ω ) ) ) |
| 77 | simprl | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → 𝑦 ∈ ω ) | |
| 78 | oaabslem | ⊢ ( ( ω ∈ On ∧ 𝑦 ∈ ω ) → ( 𝑦 +o ω ) = ω ) | |
| 79 | 74 77 78 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( 𝑦 +o ω ) = ω ) |
| 80 | 79 | oveq2d | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( ( ω ↑o 𝑥 ) ·o ( 𝑦 +o ω ) ) = ( ( ω ↑o 𝑥 ) ·o ω ) ) |
| 81 | 76 80 | eqtr3d | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ( ω ↑o 𝑥 ) ·o ω ) ) = ( ( ω ↑o 𝑥 ) ·o ω ) ) |
| 82 | 55 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( ω ↑o 𝐶 ) = ( ( ω ↑o 𝑥 ) ·o ω ) ) |
| 83 | 82 | oveq2d | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝐶 ) ) = ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ( ω ↑o 𝑥 ) ·o ω ) ) ) |
| 84 | 81 83 82 | 3eqtr4d | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( ( ( ω ↑o 𝑥 ) ·o 𝑦 ) +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
| 85 | 73 84 | sseqtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ( ( ω ↑o 𝑥 ) ·o 𝑦 ) ) ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) ⊆ ( ω ↑o 𝐶 ) ) |
| 86 | 58 85 | rexlimddv | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) ⊆ ( ω ↑o 𝐶 ) ) |
| 87 | oaword2 | ⊢ ( ( ( ω ↑o 𝐶 ) ∈ On ∧ 𝐴 ∈ On ) → ( ω ↑o 𝐶 ) ⊆ ( 𝐴 +o ( ω ↑o 𝐶 ) ) ) | |
| 88 | 9 18 87 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( ω ↑o 𝐶 ) ⊆ ( 𝐴 +o ( ω ↑o 𝐶 ) ) ) |
| 89 | 88 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → ( ω ↑o 𝐶 ) ⊆ ( 𝐴 +o ( ω ↑o 𝐶 ) ) ) |
| 90 | 86 89 | eqssd | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ ( 𝑥 ∈ On ∧ 𝐶 = suc 𝑥 ) ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
| 91 | 90 | rexlimdvaa | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( ∃ 𝑥 ∈ On 𝐶 = suc 𝑥 → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) ) |
| 92 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → 𝐴 ∈ ( ω ↑o 𝐶 ) ) | |
| 93 | 31 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → ω ∈ On ) |
| 94 | 24 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → 𝐶 ∈ On ) |
| 95 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → Lim 𝐶 ) | |
| 96 | oelim2 | ⊢ ( ( ω ∈ On ∧ ( 𝐶 ∈ On ∧ Lim 𝐶 ) ) → ( ω ↑o 𝐶 ) = ∪ 𝑥 ∈ ( 𝐶 ∖ 1o ) ( ω ↑o 𝑥 ) ) | |
| 97 | 93 94 95 96 | syl12anc | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → ( ω ↑o 𝐶 ) = ∪ 𝑥 ∈ ( 𝐶 ∖ 1o ) ( ω ↑o 𝑥 ) ) |
| 98 | 92 97 | eleqtrd | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → 𝐴 ∈ ∪ 𝑥 ∈ ( 𝐶 ∖ 1o ) ( ω ↑o 𝑥 ) ) |
| 99 | eliun | ⊢ ( 𝐴 ∈ ∪ 𝑥 ∈ ( 𝐶 ∖ 1o ) ( ω ↑o 𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝐶 ∖ 1o ) 𝐴 ∈ ( ω ↑o 𝑥 ) ) | |
| 100 | 98 99 | sylib | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → ∃ 𝑥 ∈ ( 𝐶 ∖ 1o ) 𝐴 ∈ ( ω ↑o 𝑥 ) ) |
| 101 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐶 ∖ 1o ) → 𝑥 ∈ 𝐶 ) | |
| 102 | 18 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → 𝐴 ∈ On ) |
| 103 | 9 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → ( ω ↑o 𝐶 ) ∈ On ) |
| 104 | 93 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → ω ∈ On ) |
| 105 | 1onn | ⊢ 1o ∈ ω | |
| 106 | ondif2 | ⊢ ( ω ∈ ( On ∖ 2o ) ↔ ( ω ∈ On ∧ 1o ∈ ω ) ) | |
| 107 | 104 105 106 | sylanblrc | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → ω ∈ ( On ∖ 2o ) ) |
| 108 | 94 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → 𝐶 ∈ On ) |
| 109 | simplr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → Lim 𝐶 ) | |
| 110 | oelimcl | ⊢ ( ( ω ∈ ( On ∖ 2o ) ∧ ( 𝐶 ∈ On ∧ Lim 𝐶 ) ) → Lim ( ω ↑o 𝐶 ) ) | |
| 111 | 107 108 109 110 | syl12anc | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → Lim ( ω ↑o 𝐶 ) ) |
| 112 | oalim | ⊢ ( ( 𝐴 ∈ On ∧ ( ( ω ↑o 𝐶 ) ∈ On ∧ Lim ( ω ↑o 𝐶 ) ) ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ∪ 𝑦 ∈ ( ω ↑o 𝐶 ) ( 𝐴 +o 𝑦 ) ) | |
| 113 | 102 103 111 112 | syl12anc | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ∪ 𝑦 ∈ ( ω ↑o 𝐶 ) ( 𝐴 +o 𝑦 ) ) |
| 114 | oelim2 | ⊢ ( ( ω ∈ On ∧ ( 𝐶 ∈ On ∧ Lim 𝐶 ) ) → ( ω ↑o 𝐶 ) = ∪ 𝑧 ∈ ( 𝐶 ∖ 1o ) ( ω ↑o 𝑧 ) ) | |
| 115 | 93 94 95 114 | syl12anc | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → ( ω ↑o 𝐶 ) = ∪ 𝑧 ∈ ( 𝐶 ∖ 1o ) ( ω ↑o 𝑧 ) ) |
| 116 | 115 | eleq2d | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → ( 𝑦 ∈ ( ω ↑o 𝐶 ) ↔ 𝑦 ∈ ∪ 𝑧 ∈ ( 𝐶 ∖ 1o ) ( ω ↑o 𝑧 ) ) ) |
| 117 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑧 ∈ ( 𝐶 ∖ 1o ) ( ω ↑o 𝑧 ) ↔ ∃ 𝑧 ∈ ( 𝐶 ∖ 1o ) 𝑦 ∈ ( ω ↑o 𝑧 ) ) | |
| 118 | 116 117 | bitrdi | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → ( 𝑦 ∈ ( ω ↑o 𝐶 ) ↔ ∃ 𝑧 ∈ ( 𝐶 ∖ 1o ) 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) |
| 119 | 118 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → ( 𝑦 ∈ ( ω ↑o 𝐶 ) ↔ ∃ 𝑧 ∈ ( 𝐶 ∖ 1o ) 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) |
| 120 | eldifi | ⊢ ( 𝑧 ∈ ( 𝐶 ∖ 1o ) → 𝑧 ∈ 𝐶 ) | |
| 121 | 104 | adantr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ω ∈ On ) |
| 122 | 108 | adantr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝐶 ∈ On ) |
| 123 | simplrl | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝑥 ∈ 𝐶 ) | |
| 124 | onelon | ⊢ ( ( 𝐶 ∈ On ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ On ) | |
| 125 | 122 123 124 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝑥 ∈ On ) |
| 126 | 121 125 46 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ω ↑o 𝑥 ) ∈ On ) |
| 127 | eloni | ⊢ ( ( ω ↑o 𝑥 ) ∈ On → Ord ( ω ↑o 𝑥 ) ) | |
| 128 | 126 127 | syl | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → Ord ( ω ↑o 𝑥 ) ) |
| 129 | simplrr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝐴 ∈ ( ω ↑o 𝑥 ) ) | |
| 130 | ordelss | ⊢ ( ( Ord ( ω ↑o 𝑥 ) ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) → 𝐴 ⊆ ( ω ↑o 𝑥 ) ) | |
| 131 | 128 129 130 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝐴 ⊆ ( ω ↑o 𝑥 ) ) |
| 132 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ 𝑧 ) | |
| 133 | 26 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → Ord 𝐶 ) |
| 134 | simprl | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝑧 ∈ 𝐶 ) | |
| 135 | ordunel | ⊢ ( ( Ord 𝐶 ∧ 𝑥 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ∪ 𝑧 ) ∈ 𝐶 ) | |
| 136 | 133 123 134 135 | syl3anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( 𝑥 ∪ 𝑧 ) ∈ 𝐶 ) |
| 137 | onelon | ⊢ ( ( 𝐶 ∈ On ∧ ( 𝑥 ∪ 𝑧 ) ∈ 𝐶 ) → ( 𝑥 ∪ 𝑧 ) ∈ On ) | |
| 138 | 122 136 137 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( 𝑥 ∪ 𝑧 ) ∈ On ) |
| 139 | peano1 | ⊢ ∅ ∈ ω | |
| 140 | 139 | a1i | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ∅ ∈ ω ) |
| 141 | oewordi | ⊢ ( ( ( 𝑥 ∈ On ∧ ( 𝑥 ∪ 𝑧 ) ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ( 𝑥 ⊆ ( 𝑥 ∪ 𝑧 ) → ( ω ↑o 𝑥 ) ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ) | |
| 142 | 125 138 121 140 141 | syl31anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( 𝑥 ⊆ ( 𝑥 ∪ 𝑧 ) → ( ω ↑o 𝑥 ) ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ) |
| 143 | 132 142 | mpi | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ω ↑o 𝑥 ) ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) |
| 144 | 131 143 | sstrd | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝐴 ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) |
| 145 | 102 | adantr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝐴 ∈ On ) |
| 146 | oecl | ⊢ ( ( ω ∈ On ∧ ( 𝑥 ∪ 𝑧 ) ∈ On ) → ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ∈ On ) | |
| 147 | 121 138 146 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ∈ On ) |
| 148 | onelon | ⊢ ( ( 𝐶 ∈ On ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ On ) | |
| 149 | 122 134 148 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝑧 ∈ On ) |
| 150 | oecl | ⊢ ( ( ω ∈ On ∧ 𝑧 ∈ On ) → ( ω ↑o 𝑧 ) ∈ On ) | |
| 151 | 121 149 150 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ω ↑o 𝑧 ) ∈ On ) |
| 152 | simprr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝑦 ∈ ( ω ↑o 𝑧 ) ) | |
| 153 | onelon | ⊢ ( ( ( ω ↑o 𝑧 ) ∈ On ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) → 𝑦 ∈ On ) | |
| 154 | 151 152 153 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝑦 ∈ On ) |
| 155 | oawordri | ⊢ ( ( 𝐴 ∈ On ∧ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) → ( 𝐴 +o 𝑦 ) ⊆ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o 𝑦 ) ) ) | |
| 156 | 145 147 154 155 | syl3anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( 𝐴 ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) → ( 𝐴 +o 𝑦 ) ⊆ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o 𝑦 ) ) ) |
| 157 | 144 156 | mpd | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( 𝐴 +o 𝑦 ) ⊆ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o 𝑦 ) ) |
| 158 | eloni | ⊢ ( ( ω ↑o 𝑧 ) ∈ On → Ord ( ω ↑o 𝑧 ) ) | |
| 159 | 151 158 | syl | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → Ord ( ω ↑o 𝑧 ) ) |
| 160 | ordelss | ⊢ ( ( Ord ( ω ↑o 𝑧 ) ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) → 𝑦 ⊆ ( ω ↑o 𝑧 ) ) | |
| 161 | 159 152 160 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝑦 ⊆ ( ω ↑o 𝑧 ) ) |
| 162 | ssun2 | ⊢ 𝑧 ⊆ ( 𝑥 ∪ 𝑧 ) | |
| 163 | oewordi | ⊢ ( ( ( 𝑧 ∈ On ∧ ( 𝑥 ∪ 𝑧 ) ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ( 𝑧 ⊆ ( 𝑥 ∪ 𝑧 ) → ( ω ↑o 𝑧 ) ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ) | |
| 164 | 149 138 121 140 163 | syl31anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( 𝑧 ⊆ ( 𝑥 ∪ 𝑧 ) → ( ω ↑o 𝑧 ) ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ) |
| 165 | 162 164 | mpi | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ω ↑o 𝑧 ) ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) |
| 166 | 161 165 | sstrd | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 𝑦 ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) |
| 167 | oaword | ⊢ ( ( 𝑦 ∈ On ∧ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ∈ On ∧ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ∈ On ) → ( 𝑦 ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ↔ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o 𝑦 ) ⊆ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ) ) | |
| 168 | 154 147 147 167 | syl3anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( 𝑦 ⊆ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ↔ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o 𝑦 ) ⊆ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ) ) |
| 169 | 166 168 | mpbid | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o 𝑦 ) ⊆ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ) |
| 170 | 157 169 | sstrd | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( 𝐴 +o 𝑦 ) ⊆ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ) |
| 171 | ordom | ⊢ Ord ω | |
| 172 | ordsucss | ⊢ ( Ord ω → ( 1o ∈ ω → suc 1o ⊆ ω ) ) | |
| 173 | 171 105 172 | mp2 | ⊢ suc 1o ⊆ ω |
| 174 | 1on | ⊢ 1o ∈ On | |
| 175 | onsuc | ⊢ ( 1o ∈ On → suc 1o ∈ On ) | |
| 176 | 174 175 | mp1i | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → suc 1o ∈ On ) |
| 177 | omwordi | ⊢ ( ( suc 1o ∈ On ∧ ω ∈ On ∧ ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ∈ On ) → ( suc 1o ⊆ ω → ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o suc 1o ) ⊆ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o ω ) ) ) | |
| 178 | 176 121 147 177 | syl3anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( suc 1o ⊆ ω → ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o suc 1o ) ⊆ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o ω ) ) ) |
| 179 | 173 178 | mpi | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o suc 1o ) ⊆ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o ω ) ) |
| 180 | 174 | a1i | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → 1o ∈ On ) |
| 181 | omsuc | ⊢ ( ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ∈ On ∧ 1o ∈ On ) → ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o suc 1o ) = ( ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o 1o ) +o ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ) | |
| 182 | 147 180 181 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o suc 1o ) = ( ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o 1o ) +o ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ) |
| 183 | om1 | ⊢ ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ∈ On → ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o 1o ) = ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) | |
| 184 | 147 183 | syl | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o 1o ) = ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) |
| 185 | 184 | oveq1d | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o 1o ) +o ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) = ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ) |
| 186 | 182 185 | eqtr2d | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) = ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o suc 1o ) ) |
| 187 | oesuc | ⊢ ( ( ω ∈ On ∧ ( 𝑥 ∪ 𝑧 ) ∈ On ) → ( ω ↑o suc ( 𝑥 ∪ 𝑧 ) ) = ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o ω ) ) | |
| 188 | 121 138 187 | syl2anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ω ↑o suc ( 𝑥 ∪ 𝑧 ) ) = ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ·o ω ) ) |
| 189 | 179 186 188 | 3sstr4d | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) +o ( ω ↑o ( 𝑥 ∪ 𝑧 ) ) ) ⊆ ( ω ↑o suc ( 𝑥 ∪ 𝑧 ) ) ) |
| 190 | 170 189 | sstrd | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( 𝐴 +o 𝑦 ) ⊆ ( ω ↑o suc ( 𝑥 ∪ 𝑧 ) ) ) |
| 191 | ordsucss | ⊢ ( Ord 𝐶 → ( ( 𝑥 ∪ 𝑧 ) ∈ 𝐶 → suc ( 𝑥 ∪ 𝑧 ) ⊆ 𝐶 ) ) | |
| 192 | 133 136 191 | sylc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → suc ( 𝑥 ∪ 𝑧 ) ⊆ 𝐶 ) |
| 193 | onsuc | ⊢ ( ( 𝑥 ∪ 𝑧 ) ∈ On → suc ( 𝑥 ∪ 𝑧 ) ∈ On ) | |
| 194 | 138 193 | syl | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → suc ( 𝑥 ∪ 𝑧 ) ∈ On ) |
| 195 | oewordi | ⊢ ( ( ( suc ( 𝑥 ∪ 𝑧 ) ∈ On ∧ 𝐶 ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ( suc ( 𝑥 ∪ 𝑧 ) ⊆ 𝐶 → ( ω ↑o suc ( 𝑥 ∪ 𝑧 ) ) ⊆ ( ω ↑o 𝐶 ) ) ) | |
| 196 | 194 122 121 140 195 | syl31anc | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( suc ( 𝑥 ∪ 𝑧 ) ⊆ 𝐶 → ( ω ↑o suc ( 𝑥 ∪ 𝑧 ) ) ⊆ ( ω ↑o 𝐶 ) ) ) |
| 197 | 192 196 | mpd | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( ω ↑o suc ( 𝑥 ∪ 𝑧 ) ) ⊆ ( ω ↑o 𝐶 ) ) |
| 198 | 190 197 | sstrd | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑦 ∈ ( ω ↑o 𝑧 ) ) ) → ( 𝐴 +o 𝑦 ) ⊆ ( ω ↑o 𝐶 ) ) |
| 199 | 198 | expr | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ∈ ( ω ↑o 𝑧 ) → ( 𝐴 +o 𝑦 ) ⊆ ( ω ↑o 𝐶 ) ) ) |
| 200 | 120 199 | sylan2 | ⊢ ( ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) ∧ 𝑧 ∈ ( 𝐶 ∖ 1o ) ) → ( 𝑦 ∈ ( ω ↑o 𝑧 ) → ( 𝐴 +o 𝑦 ) ⊆ ( ω ↑o 𝐶 ) ) ) |
| 201 | 200 | rexlimdva | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → ( ∃ 𝑧 ∈ ( 𝐶 ∖ 1o ) 𝑦 ∈ ( ω ↑o 𝑧 ) → ( 𝐴 +o 𝑦 ) ⊆ ( ω ↑o 𝐶 ) ) ) |
| 202 | 119 201 | sylbid | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → ( 𝑦 ∈ ( ω ↑o 𝐶 ) → ( 𝐴 +o 𝑦 ) ⊆ ( ω ↑o 𝐶 ) ) ) |
| 203 | 202 | ralrimiv | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → ∀ 𝑦 ∈ ( ω ↑o 𝐶 ) ( 𝐴 +o 𝑦 ) ⊆ ( ω ↑o 𝐶 ) ) |
| 204 | iunss | ⊢ ( ∪ 𝑦 ∈ ( ω ↑o 𝐶 ) ( 𝐴 +o 𝑦 ) ⊆ ( ω ↑o 𝐶 ) ↔ ∀ 𝑦 ∈ ( ω ↑o 𝐶 ) ( 𝐴 +o 𝑦 ) ⊆ ( ω ↑o 𝐶 ) ) | |
| 205 | 203 204 | sylibr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → ∪ 𝑦 ∈ ( ω ↑o 𝐶 ) ( 𝐴 +o 𝑦 ) ⊆ ( ω ↑o 𝐶 ) ) |
| 206 | 113 205 | eqsstrd | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝐴 ∈ ( ω ↑o 𝑥 ) ) ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) ⊆ ( ω ↑o 𝐶 ) ) |
| 207 | 206 | expr | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐴 ∈ ( ω ↑o 𝑥 ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) ⊆ ( ω ↑o 𝐶 ) ) ) |
| 208 | 101 207 | sylan2 | ⊢ ( ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) ∧ 𝑥 ∈ ( 𝐶 ∖ 1o ) ) → ( 𝐴 ∈ ( ω ↑o 𝑥 ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) ⊆ ( ω ↑o 𝐶 ) ) ) |
| 209 | 208 | rexlimdva | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → ( ∃ 𝑥 ∈ ( 𝐶 ∖ 1o ) 𝐴 ∈ ( ω ↑o 𝑥 ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) ⊆ ( ω ↑o 𝐶 ) ) ) |
| 210 | 100 209 | mpd | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) ⊆ ( ω ↑o 𝐶 ) ) |
| 211 | 88 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → ( ω ↑o 𝐶 ) ⊆ ( 𝐴 +o ( ω ↑o 𝐶 ) ) ) |
| 212 | 210 211 | eqssd | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ Lim 𝐶 ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
| 213 | 212 | ex | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( Lim 𝐶 → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) ) |
| 214 | 43 91 213 | 3jaod | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( ( 𝐶 = ∅ ∨ ∃ 𝑥 ∈ On 𝐶 = suc 𝑥 ∨ Lim 𝐶 ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) ) |
| 215 | 28 214 | mpd | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
| 216 | 215 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( 𝐴 +o ( ω ↑o 𝐶 ) ) = ( ω ↑o 𝐶 ) ) |
| 217 | 216 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ( ω ↑o 𝐶 ) ) +o 𝑥 ) = ( ( ω ↑o 𝐶 ) +o 𝑥 ) ) |
| 218 | 23 217 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( 𝐴 +o ( ( ω ↑o 𝐶 ) +o 𝑥 ) ) = ( ( ω ↑o 𝐶 ) +o 𝑥 ) ) |
| 219 | oveq2 | ⊢ ( ( ( ω ↑o 𝐶 ) +o 𝑥 ) = 𝐵 → ( 𝐴 +o ( ( ω ↑o 𝐶 ) +o 𝑥 ) ) = ( 𝐴 +o 𝐵 ) ) | |
| 220 | id | ⊢ ( ( ( ω ↑o 𝐶 ) +o 𝑥 ) = 𝐵 → ( ( ω ↑o 𝐶 ) +o 𝑥 ) = 𝐵 ) | |
| 221 | 219 220 | eqeq12d | ⊢ ( ( ( ω ↑o 𝐶 ) +o 𝑥 ) = 𝐵 → ( ( 𝐴 +o ( ( ω ↑o 𝐶 ) +o 𝑥 ) ) = ( ( ω ↑o 𝐶 ) +o 𝑥 ) ↔ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
| 222 | 218 221 | syl5ibcom | ⊢ ( ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ( ( ω ↑o 𝐶 ) +o 𝑥 ) = 𝐵 → ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
| 223 | 222 | rexlimdva | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( ∃ 𝑥 ∈ On ( ( ω ↑o 𝐶 ) +o 𝑥 ) = 𝐵 → ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
| 224 | 15 223 | mpd | ⊢ ( ( ( 𝐴 ∈ ( ω ↑o 𝐶 ) ∧ 𝐵 ∈ On ) ∧ ( ω ↑o 𝐶 ) ⊆ 𝐵 ) → ( 𝐴 +o 𝐵 ) = 𝐵 ) |