This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oaabs . (Contributed by NM, 9-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaabslem | ⊢ ( ( ω ∈ On ∧ 𝐴 ∈ ω ) → ( 𝐴 +o ω ) = ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 2 | limom | ⊢ Lim ω | |
| 3 | 2 | jctr | ⊢ ( ω ∈ On → ( ω ∈ On ∧ Lim ω ) ) |
| 4 | oalim | ⊢ ( ( 𝐴 ∈ On ∧ ( ω ∈ On ∧ Lim ω ) ) → ( 𝐴 +o ω ) = ∪ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ) | |
| 5 | 1 3 4 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ ω ∈ On ) → ( 𝐴 +o ω ) = ∪ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ) |
| 6 | ordom | ⊢ Ord ω | |
| 7 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) ∈ ω ) | |
| 8 | ordelss | ⊢ ( ( Ord ω ∧ ( 𝐴 +o 𝑥 ) ∈ ω ) → ( 𝐴 +o 𝑥 ) ⊆ ω ) | |
| 9 | 6 7 8 | sylancr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝐴 +o 𝑥 ) ⊆ ω ) |
| 10 | 9 | ralrimiva | ⊢ ( 𝐴 ∈ ω → ∀ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ⊆ ω ) |
| 11 | iunss | ⊢ ( ∪ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ⊆ ω ↔ ∀ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ⊆ ω ) | |
| 12 | 10 11 | sylibr | ⊢ ( 𝐴 ∈ ω → ∪ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ⊆ ω ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ ω ∈ On ) → ∪ 𝑥 ∈ ω ( 𝐴 +o 𝑥 ) ⊆ ω ) |
| 14 | 5 13 | eqsstrd | ⊢ ( ( 𝐴 ∈ ω ∧ ω ∈ On ) → ( 𝐴 +o ω ) ⊆ ω ) |
| 15 | 14 | ancoms | ⊢ ( ( ω ∈ On ∧ 𝐴 ∈ ω ) → ( 𝐴 +o ω ) ⊆ ω ) |
| 16 | oaword2 | ⊢ ( ( ω ∈ On ∧ 𝐴 ∈ On ) → ω ⊆ ( 𝐴 +o ω ) ) | |
| 17 | 1 16 | sylan2 | ⊢ ( ( ω ∈ On ∧ 𝐴 ∈ ω ) → ω ⊆ ( 𝐴 +o ω ) ) |
| 18 | 15 17 | eqssd | ⊢ ( ( ω ∈ On ∧ 𝐴 ∈ ω ) → ( 𝐴 +o ω ) = ω ) |