This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. Remark 1.12 of Schloeder p. 2. (Contributed by NM, 1-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordzsl | ⊢ ( Ord 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduninsuc | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) | |
| 2 | 1 | biimprd | ⊢ ( Ord 𝐴 → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 = ∪ 𝐴 ) ) |
| 3 | unizlim | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) | |
| 4 | 2 3 | sylibd | ⊢ ( Ord 𝐴 → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
| 5 | 4 | orrd | ⊢ ( Ord 𝐴 → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
| 6 | 3orass | ⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ↔ ( 𝐴 = ∅ ∨ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) ) | |
| 7 | or12 | ⊢ ( ( 𝐴 = ∅ ∨ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) ↔ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ↔ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
| 9 | 5 8 | sylibr | ⊢ ( Ord 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) |
| 10 | ord0 | ⊢ Ord ∅ | |
| 11 | ordeq | ⊢ ( 𝐴 = ∅ → ( Ord 𝐴 ↔ Ord ∅ ) ) | |
| 12 | 10 11 | mpbiri | ⊢ ( 𝐴 = ∅ → Ord 𝐴 ) |
| 13 | onsuc | ⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) | |
| 14 | eleq1 | ⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ On ↔ suc 𝑥 ∈ On ) ) | |
| 15 | 13 14 | imbitrrid | ⊢ ( 𝐴 = suc 𝑥 → ( 𝑥 ∈ On → 𝐴 ∈ On ) ) |
| 16 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 17 | 15 16 | syl6com | ⊢ ( 𝑥 ∈ On → ( 𝐴 = suc 𝑥 → Ord 𝐴 ) ) |
| 18 | 17 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → Ord 𝐴 ) |
| 19 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 20 | 12 18 19 | 3jaoi | ⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) → Ord 𝐴 ) |
| 21 | 9 20 | impbii | ⊢ ( Ord 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) |