This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of TakeutiZaring p. 59. (Contributed by NM, 11-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oawordeu | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 ⊆ 𝐵 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ 𝐵 ) ) | |
| 2 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 +o 𝑥 ) = ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) ) | |
| 3 | 2 | eqeq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ) ) |
| 4 | 3 | reubidv | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ↔ ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ) ) |
| 5 | 1 4 | imbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ( 𝐴 ⊆ 𝐵 → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ 𝐵 → ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ) ) ) |
| 6 | sseq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ 𝐵 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ if ( 𝐵 ∈ On , 𝐵 , ∅ ) ) ) | |
| 7 | eqeq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ( ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = if ( 𝐵 ∈ On , 𝐵 , ∅ ) ) ) | |
| 8 | 7 | reubidv | ⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ( ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ↔ ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = if ( 𝐵 ∈ On , 𝐵 , ∅ ) ) ) |
| 9 | 6 8 | imbi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ( ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ 𝐵 → ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = 𝐵 ) ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = if ( 𝐵 ∈ On , 𝐵 , ∅ ) ) ) ) |
| 10 | 0elon | ⊢ ∅ ∈ On | |
| 11 | 10 | elimel | ⊢ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ∈ On |
| 12 | 10 | elimel | ⊢ if ( 𝐵 ∈ On , 𝐵 , ∅ ) ∈ On |
| 13 | eqid | ⊢ { 𝑦 ∈ On ∣ if ( 𝐵 ∈ On , 𝐵 , ∅ ) ⊆ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑦 ) } = { 𝑦 ∈ On ∣ if ( 𝐵 ∈ On , 𝐵 , ∅ ) ⊆ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑦 ) } | |
| 14 | 11 12 13 | oawordeulem | ⊢ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) ⊆ if ( 𝐵 ∈ On , 𝐵 , ∅ ) → ∃! 𝑥 ∈ On ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) +o 𝑥 ) = if ( 𝐵 ∈ On , 𝐵 , ∅ ) ) |
| 15 | 5 9 14 | dedth2h | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 16 | 15 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝐵 ) |