This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oelimcl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Lim ( 𝐴 ↑o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) | |
| 2 | limelon | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) | |
| 3 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 5 | eloni | ⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ On → Ord ( 𝐴 ↑o 𝐵 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Ord ( 𝐴 ↑o 𝐵 ) ) |
| 7 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → 𝐴 ∈ On ) |
| 8 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → 𝐵 ∈ On ) |
| 9 | dif20el | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐴 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ∅ ∈ 𝐴 ) |
| 11 | oen0 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) | |
| 12 | 7 8 10 11 | syl21anc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 13 | oelim2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ) | |
| 14 | 1 13 | sylan | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ) |
| 15 | 14 | eleq2d | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ↔ 𝑥 ∈ ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ) ) |
| 16 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ↔ ∃ 𝑦 ∈ ( 𝐵 ∖ 1o ) 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) | |
| 17 | eldifi | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ 1o ) → 𝑦 ∈ 𝐵 ) | |
| 18 | 7 | adantr | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝐴 ∈ On ) |
| 19 | 8 | adantr | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝐵 ∈ On ) |
| 20 | simprl | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 21 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ On ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑦 ∈ On ) |
| 23 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) | |
| 24 | 18 22 23 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 25 | eloni | ⊢ ( ( 𝐴 ↑o 𝑦 ) ∈ On → Ord ( 𝐴 ↑o 𝑦 ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → Ord ( 𝐴 ↑o 𝑦 ) ) |
| 27 | simprr | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) | |
| 28 | ordsucss | ⊢ ( Ord ( 𝐴 ↑o 𝑦 ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ) ) | |
| 29 | 26 27 28 | sylc | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ) |
| 30 | simpll | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝐴 ∈ ( On ∖ 2o ) ) | |
| 31 | oeordi | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝑦 ∈ 𝐵 → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) | |
| 32 | 19 30 31 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝑦 ∈ 𝐵 → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 33 | 20 32 | mpd | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 34 | onelon | ⊢ ( ( ( 𝐴 ↑o 𝑦 ) ∈ On ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) → 𝑥 ∈ On ) | |
| 35 | 24 27 34 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑥 ∈ On ) |
| 36 | onsuc | ⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) | |
| 37 | 35 36 | syl | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → suc 𝑥 ∈ On ) |
| 38 | 4 | adantr | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 39 | ontr2 | ⊢ ( ( suc 𝑥 ∈ On ∧ ( 𝐴 ↑o 𝐵 ) ∈ On ) → ( ( suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ∧ ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) | |
| 40 | 37 38 39 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( ( suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ∧ ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 41 | 29 33 40 | mp2and | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 42 | 41 | expr | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 43 | 17 42 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐵 ∖ 1o ) ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 44 | 43 | rexlimdva | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ∃ 𝑦 ∈ ( 𝐵 ∖ 1o ) 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 45 | 16 44 | biimtrid | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝑥 ∈ ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 46 | 15 45 | sylbid | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 47 | 46 | ralrimiv | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ∀ 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 48 | dflim4 | ⊢ ( Lim ( 𝐴 ↑o 𝐵 ) ↔ ( Ord ( 𝐴 ↑o 𝐵 ) ∧ ∅ ∈ ( 𝐴 ↑o 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) | |
| 49 | 6 12 47 48 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Lim ( 𝐴 ↑o 𝐵 ) ) |