This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of TakeutiZaring p. 59. (Contributed by NM, 9-Dec-2004) (Proof shortened by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaabs | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ( 𝐴 +o 𝐵 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | ⊢ ( ( ω ⊆ 𝐵 ∧ 𝐵 ∈ On ) → ω ∈ V ) | |
| 2 | 1 | ex | ⊢ ( ω ⊆ 𝐵 → ( 𝐵 ∈ On → ω ∈ V ) ) |
| 3 | omelon2 | ⊢ ( ω ∈ V → ω ∈ On ) | |
| 4 | 2 3 | syl6com | ⊢ ( 𝐵 ∈ On → ( ω ⊆ 𝐵 → ω ∈ On ) ) |
| 5 | 4 | imp | ⊢ ( ( 𝐵 ∈ On ∧ ω ⊆ 𝐵 ) → ω ∈ On ) |
| 6 | 5 | adantll | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ω ∈ On ) |
| 7 | simplr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → 𝐵 ∈ On ) | |
| 8 | 6 7 | jca | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ( ω ∈ On ∧ 𝐵 ∈ On ) ) |
| 9 | oawordeu | ⊢ ( ( ( ω ∈ On ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ∃! 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 ) | |
| 10 | 8 9 | sylancom | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ∃! 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 ) |
| 11 | reurex | ⊢ ( ∃! 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ∃ 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 ) |
| 13 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 14 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → 𝐴 ∈ On ) |
| 15 | 6 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ω ∈ On ) |
| 16 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → 𝑥 ∈ On ) | |
| 17 | oaass | ⊢ ( ( 𝐴 ∈ On ∧ ω ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ω ) +o 𝑥 ) = ( 𝐴 +o ( ω +o 𝑥 ) ) ) | |
| 18 | 14 15 16 17 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ω ) +o 𝑥 ) = ( 𝐴 +o ( ω +o 𝑥 ) ) ) |
| 19 | simpll | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → 𝐴 ∈ ω ) | |
| 20 | oaabslem | ⊢ ( ( ω ∈ On ∧ 𝐴 ∈ ω ) → ( 𝐴 +o ω ) = ω ) | |
| 21 | 6 19 20 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ( 𝐴 +o ω ) = ω ) |
| 22 | 21 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( 𝐴 +o ω ) = ω ) |
| 23 | 22 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ω ) +o 𝑥 ) = ( ω +o 𝑥 ) ) |
| 24 | 18 23 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( 𝐴 +o ( ω +o 𝑥 ) ) = ( ω +o 𝑥 ) ) |
| 25 | oveq2 | ⊢ ( ( ω +o 𝑥 ) = 𝐵 → ( 𝐴 +o ( ω +o 𝑥 ) ) = ( 𝐴 +o 𝐵 ) ) | |
| 26 | id | ⊢ ( ( ω +o 𝑥 ) = 𝐵 → ( ω +o 𝑥 ) = 𝐵 ) | |
| 27 | 25 26 | eqeq12d | ⊢ ( ( ω +o 𝑥 ) = 𝐵 → ( ( 𝐴 +o ( ω +o 𝑥 ) ) = ( ω +o 𝑥 ) ↔ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
| 28 | 24 27 | syl5ibcom | ⊢ ( ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ( ω +o 𝑥 ) = 𝐵 → ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
| 29 | 28 | rexlimdva | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ( ∃ 𝑥 ∈ On ( ω +o 𝑥 ) = 𝐵 → ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
| 30 | 12 29 | mpd | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ On ) ∧ ω ⊆ 𝐵 ) → ( 𝐴 +o 𝐵 ) = 𝐵 ) |