This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for ordinal arithmetic (left-distributivity). Proposition 8.25 of TakeutiZaring p. 64. Theorem 4.3 of Schloeder p. 12. (Contributed by NM, 26-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | odi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o ∅ ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o ∅ ) ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) ) |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝑦 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o suc 𝑦 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝐶 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐶 ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) |
| 21 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) ∈ On ) | |
| 22 | oa0 | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ( 𝐴 ·o 𝐵 ) +o ∅ ) = ( 𝐴 ·o 𝐵 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) +o ∅ ) = ( 𝐴 ·o 𝐵 ) ) |
| 24 | om0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ∅ ) = ∅ ) |
| 26 | 25 | oveq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) |
| 27 | oa0 | ⊢ ( 𝐵 ∈ On → ( 𝐵 +o ∅ ) = 𝐵 ) | |
| 28 | 27 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o ∅ ) = 𝐵 ) |
| 29 | 28 | oveq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( 𝐴 ·o 𝐵 ) ) |
| 30 | 23 26 29 | 3eqtr4rd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o ∅ ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o ∅ ) ) ) |
| 31 | oveq1 | ⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) | |
| 32 | oasuc | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) | |
| 33 | 32 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 34 | 33 | oveq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) ) |
| 35 | oacl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o 𝑦 ) ∈ On ) | |
| 36 | omsuc | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 +o 𝑦 ) ∈ On ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) | |
| 37 | 35 36 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
| 38 | 37 | 3impb | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o suc ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
| 39 | 34 38 | eqtrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) ) |
| 40 | omsuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) | |
| 41 | 40 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
| 42 | 41 | oveq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 43 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o 𝑦 ) ∈ On ) | |
| 44 | oaass | ⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ ( 𝐴 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) | |
| 45 | 21 44 | syl3an1 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ·o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 46 | 43 45 | syl3an2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐴 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 47 | 46 | 3exp | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) |
| 48 | 47 | exp4b | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) ) |
| 49 | 48 | pm2.43a | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) |
| 50 | 49 | com4r | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) ) |
| 51 | 50 | pm2.43i | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) ) ) |
| 52 | 51 | 3imp | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) ) |
| 53 | 42 52 | eqtr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) |
| 54 | 39 53 | eqeq12d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ↔ ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) +o 𝐴 ) = ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) +o 𝐴 ) ) ) |
| 55 | 31 54 | imbitrrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) |
| 56 | 55 | 3exp | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ On → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) ) |
| 57 | 56 | com3r | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) ) |
| 58 | 57 | impd | ⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o suc 𝑦 ) ) ) ) ) |
| 59 | vex | ⊢ 𝑥 ∈ V | |
| 60 | limelon | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) | |
| 61 | 59 60 | mpan | ⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
| 62 | oacl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐵 +o 𝑥 ) ∈ On ) | |
| 63 | om0r | ⊢ ( ( 𝐵 +o 𝑥 ) ∈ On → ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ∅ ) | |
| 64 | 62 63 | syl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ∅ ) |
| 65 | om0r | ⊢ ( 𝐵 ∈ On → ( ∅ ·o 𝐵 ) = ∅ ) | |
| 66 | om0r | ⊢ ( 𝑥 ∈ On → ( ∅ ·o 𝑥 ) = ∅ ) | |
| 67 | 65 66 | oveqan12d | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) = ( ∅ +o ∅ ) ) |
| 68 | 0elon | ⊢ ∅ ∈ On | |
| 69 | oa0 | ⊢ ( ∅ ∈ On → ( ∅ +o ∅ ) = ∅ ) | |
| 70 | 68 69 | ax-mp | ⊢ ( ∅ +o ∅ ) = ∅ |
| 71 | 67 70 | eqtr2di | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ∅ = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) |
| 72 | 64 71 | eqtrd | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) |
| 73 | 61 72 | sylan2 | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) |
| 74 | 73 | ancoms | ⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) |
| 75 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ∅ ·o ( 𝐵 +o 𝑥 ) ) ) | |
| 76 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) ) | |
| 77 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ·o 𝑥 ) = ( ∅ ·o 𝑥 ) ) | |
| 78 | 76 77 | oveq12d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) |
| 79 | 75 78 | eqeq12d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ↔ ( ∅ ·o ( 𝐵 +o 𝑥 ) ) = ( ( ∅ ·o 𝐵 ) +o ( ∅ ·o 𝑥 ) ) ) ) |
| 80 | 74 79 | imbitrrid | ⊢ ( 𝐴 = ∅ → ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) |
| 81 | 80 | expd | ⊢ ( 𝐴 = ∅ → ( Lim 𝑥 → ( 𝐵 ∈ On → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
| 82 | 81 | com3r | ⊢ ( 𝐵 ∈ On → ( 𝐴 = ∅ → ( Lim 𝑥 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
| 83 | 82 | imp | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( Lim 𝑥 → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) |
| 84 | 83 | a1dd | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
| 85 | simplr | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → 𝐵 ∈ On ) | |
| 86 | 62 | ancoms | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o 𝑥 ) ∈ On ) |
| 87 | onelon | ⊢ ( ( ( 𝐵 +o 𝑥 ) ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → 𝑧 ∈ On ) | |
| 88 | 86 87 | sylan | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → 𝑧 ∈ On ) |
| 89 | ontri1 | ⊢ ( ( 𝐵 ∈ On ∧ 𝑧 ∈ On ) → ( 𝐵 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝐵 ) ) | |
| 90 | oawordex | ⊢ ( ( 𝐵 ∈ On ∧ 𝑧 ∈ On ) → ( 𝐵 ⊆ 𝑧 ↔ ∃ 𝑣 ∈ On ( 𝐵 +o 𝑣 ) = 𝑧 ) ) | |
| 91 | 89 90 | bitr3d | ⊢ ( ( 𝐵 ∈ On ∧ 𝑧 ∈ On ) → ( ¬ 𝑧 ∈ 𝐵 ↔ ∃ 𝑣 ∈ On ( 𝐵 +o 𝑣 ) = 𝑧 ) ) |
| 92 | 85 88 91 | syl2anc | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( ¬ 𝑧 ∈ 𝐵 ↔ ∃ 𝑣 ∈ On ( 𝐵 +o 𝑣 ) = 𝑧 ) ) |
| 93 | oaord | ⊢ ( ( 𝑣 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑣 ∈ 𝑥 ↔ ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) | |
| 94 | 93 | 3expb | ⊢ ( ( 𝑣 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑣 ∈ 𝑥 ↔ ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) |
| 95 | eleq1 | ⊢ ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ↔ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ) | |
| 96 | 94 95 | sylan9bb | ⊢ ( ( ( 𝑣 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝑣 ∈ 𝑥 ↔ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ) |
| 97 | iba | ⊢ ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝑣 ∈ 𝑥 ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) | |
| 98 | 97 | adantl | ⊢ ( ( ( 𝑣 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝑣 ∈ 𝑥 ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
| 99 | 96 98 | bitr3d | ⊢ ( ( ( 𝑣 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
| 100 | 99 | an32s | ⊢ ( ( ( 𝑣 ∈ On ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
| 101 | 100 | biimpcd | ⊢ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → ( ( ( 𝑣 ∈ On ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
| 102 | 101 | exp4c | ⊢ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → ( 𝑣 ∈ On → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) ) ) |
| 103 | 102 | com4r | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → ( 𝑣 ∈ On → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) ) ) |
| 104 | 103 | imp | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑣 ∈ On → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) ) |
| 105 | 104 | reximdvai | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( ∃ 𝑣 ∈ On ( 𝐵 +o 𝑣 ) = 𝑧 → ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
| 106 | 92 105 | sylbid | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( ¬ 𝑧 ∈ 𝐵 → ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
| 107 | 106 | orrd | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
| 108 | 61 107 | sylanl1 | ⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
| 109 | 108 | adantlrl | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
| 110 | 109 | adantlr | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) ) |
| 111 | 0ellim | ⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) | |
| 112 | om00el | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∅ ∈ ( 𝐴 ·o 𝑥 ) ↔ ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥 ) ) ) | |
| 113 | 112 | biimprd | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ( ∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥 ) → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 114 | 111 113 | sylan2i | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ( ∅ ∈ 𝐴 ∧ Lim 𝑥 ) → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 115 | 61 114 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( ( ∅ ∈ 𝐴 ∧ Lim 𝑥 ) → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 116 | 115 | exp4b | ⊢ ( 𝐴 ∈ On → ( Lim 𝑥 → ( ∅ ∈ 𝐴 → ( Lim 𝑥 → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) ) ) |
| 117 | 116 | com4r | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( Lim 𝑥 → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) ) ) |
| 118 | 117 | pm2.43a | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) ) |
| 119 | 118 | imp31 | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) |
| 120 | 119 | a1d | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 121 | 120 | adantlrr | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ∅ ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 122 | omordi | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) | |
| 123 | 122 | ancom1s | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) ) ) |
| 124 | onelss | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) | |
| 125 | 22 | sseq2d | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ↔ ( 𝐴 ·o 𝑧 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
| 126 | 124 125 | sylibrd | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ On → ( ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
| 127 | 21 126 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
| 128 | 127 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝑧 ) ∈ ( 𝐴 ·o 𝐵 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
| 129 | 123 128 | syld | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
| 130 | 129 | adantll | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
| 131 | 121 130 | jcad | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( ∅ ∈ ( 𝐴 ·o 𝑥 ) ∧ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) ) |
| 132 | oveq2 | ⊢ ( 𝑤 = ∅ → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) = ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) | |
| 133 | 132 | sseq2d | ⊢ ( 𝑤 = ∅ → ( ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ↔ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) ) |
| 134 | 133 | rspcev | ⊢ ( ( ∅ ∈ ( 𝐴 ·o 𝑥 ) ∧ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ∅ ) ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
| 135 | 131 134 | syl6 | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
| 136 | 135 | adantrr | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( 𝑧 ∈ 𝐵 → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
| 137 | omordi | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑣 ∈ 𝑥 → ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ) ) | |
| 138 | 61 137 | sylanl1 | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑣 ∈ 𝑥 → ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 139 | 138 | adantrd | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 140 | 139 | adantrr | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ) ) |
| 141 | oveq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝐵 +o 𝑦 ) = ( 𝐵 +o 𝑣 ) ) | |
| 142 | 141 | oveq2d | ⊢ ( 𝑦 = 𝑣 → ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) |
| 143 | oveq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝐴 ·o 𝑦 ) = ( 𝐴 ·o 𝑣 ) ) | |
| 144 | 143 | oveq2d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) |
| 145 | 142 144 | eqeq12d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ↔ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 146 | 145 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝑣 ∈ 𝑥 → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 147 | oveq2 | ⊢ ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( 𝐴 ·o 𝑧 ) ) | |
| 148 | eqeq1 | ⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) → ( ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( 𝐴 ·o 𝑧 ) ↔ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) = ( 𝐴 ·o 𝑧 ) ) ) | |
| 149 | 147 148 | imbitrid | ⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) = ( 𝐴 ·o 𝑧 ) ) ) |
| 150 | eqimss2 | ⊢ ( ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) = ( 𝐴 ·o 𝑧 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) | |
| 151 | 149 150 | syl6 | ⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 152 | 151 | imim2i | ⊢ ( ( 𝑣 ∈ 𝑥 → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) → ( 𝑣 ∈ 𝑥 → ( ( 𝐵 +o 𝑣 ) = 𝑧 → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) ) |
| 153 | 152 | impd | ⊢ ( ( 𝑣 ∈ 𝑥 → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 154 | 146 153 | syl | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 155 | 154 | ad2antll | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 156 | 140 155 | jcad | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ( ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ∧ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) ) |
| 157 | oveq2 | ⊢ ( 𝑤 = ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) | |
| 158 | 157 | sseq2d | ⊢ ( 𝑤 = ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ↔ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 159 | 158 | rspcev | ⊢ ( ( ( 𝐴 ·o 𝑣 ) ∈ ( 𝐴 ·o 𝑥 ) ∧ ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
| 160 | 156 159 | syl6 | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
| 161 | 160 | rexlimdvw | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
| 162 | 161 | adantlrr | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
| 163 | 136 162 | jaod | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
| 164 | 163 | adantr | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( ( 𝑧 ∈ 𝐵 ∨ ∃ 𝑣 ∈ On ( 𝑣 ∈ 𝑥 ∧ ( 𝐵 +o 𝑣 ) = 𝑧 ) ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) ) |
| 165 | 110 164 | mpd | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
| 166 | 165 | ralrimiva | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ∀ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
| 167 | iunss2 | ⊢ ( ∀ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∃ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) → ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) | |
| 168 | 166 167 | syl | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ⊆ ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
| 169 | omordlim | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) | |
| 170 | 169 | ex | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑥 ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) ) |
| 171 | 59 170 | mpanr1 | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑥 ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) ) |
| 172 | 171 | ancoms | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑥 ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) ) |
| 173 | 172 | imp | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) |
| 174 | 173 | adantlrr | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) |
| 175 | 174 | adantlr | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) ) |
| 176 | oaordi | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑣 ∈ 𝑥 → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) | |
| 177 | 61 176 | sylan | ⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( 𝑣 ∈ 𝑥 → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) |
| 178 | 177 | imp | ⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) |
| 179 | 178 | adantlrl | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) |
| 180 | 179 | a1d | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) |
| 181 | 180 | adantlr | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ) ) |
| 182 | limord | ⊢ ( Lim 𝑥 → Ord 𝑥 ) | |
| 183 | ordelon | ⊢ ( ( Ord 𝑥 ∧ 𝑣 ∈ 𝑥 ) → 𝑣 ∈ On ) | |
| 184 | 182 183 | sylan | ⊢ ( ( Lim 𝑥 ∧ 𝑣 ∈ 𝑥 ) → 𝑣 ∈ On ) |
| 185 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑣 ∈ On ) → ( 𝐴 ·o 𝑣 ) ∈ On ) | |
| 186 | 185 | ancoms | ⊢ ( ( 𝑣 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐴 ·o 𝑣 ) ∈ On ) |
| 187 | 186 | adantrr | ⊢ ( ( 𝑣 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o 𝑣 ) ∈ On ) |
| 188 | 21 | adantl | ⊢ ( ( 𝑣 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
| 189 | oaordi | ⊢ ( ( ( 𝐴 ·o 𝑣 ) ∈ On ∧ ( 𝐴 ·o 𝐵 ) ∈ On ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) | |
| 190 | 187 188 189 | syl2anc | ⊢ ( ( 𝑣 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 191 | 184 190 | sylan | ⊢ ( ( ( Lim 𝑥 ∧ 𝑣 ∈ 𝑥 ) ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 192 | 191 | an32s | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 193 | 192 | adantlr | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 194 | 145 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) |
| 195 | 194 | eleq2d | ⊢ ( ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ∧ 𝑣 ∈ 𝑥 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 196 | 195 | adantll | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑣 ) ) ) ) |
| 197 | 193 196 | sylibrd | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) |
| 198 | oacl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑣 ∈ On ) → ( 𝐵 +o 𝑣 ) ∈ On ) | |
| 199 | 198 | ancoms | ⊢ ( ( 𝑣 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o 𝑣 ) ∈ On ) |
| 200 | omcl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 +o 𝑣 ) ∈ On ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On ) | |
| 201 | 199 200 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑣 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On ) |
| 202 | 201 | an12s | ⊢ ( ( 𝑣 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On ) |
| 203 | 184 202 | sylan | ⊢ ( ( ( Lim 𝑥 ∧ 𝑣 ∈ 𝑥 ) ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On ) |
| 204 | 203 | an32s | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On ) |
| 205 | onelss | ⊢ ( ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ∈ On → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) | |
| 206 | 204 205 | syl | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑣 ∈ 𝑥 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) |
| 207 | 206 | adantlr | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ∈ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) |
| 208 | 197 207 | syld | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) |
| 209 | 181 208 | jcad | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ( ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) ) |
| 210 | oveq2 | ⊢ ( 𝑧 = ( 𝐵 +o 𝑣 ) → ( 𝐴 ·o 𝑧 ) = ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) | |
| 211 | 210 | sseq2d | ⊢ ( 𝑧 = ( 𝐵 +o 𝑣 ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ↔ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) ) |
| 212 | 211 | rspcev | ⊢ ( ( ( 𝐵 +o 𝑣 ) ∈ ( 𝐵 +o 𝑥 ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o ( 𝐵 +o 𝑣 ) ) ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
| 213 | 209 212 | syl6 | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑣 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) ) |
| 214 | 213 | rexlimdva | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) → ( ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) ) |
| 215 | 214 | adantr | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ( ∃ 𝑣 ∈ 𝑥 𝑤 ∈ ( 𝐴 ·o 𝑣 ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) ) |
| 216 | 175 215 | mpd | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ∧ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
| 217 | 216 | ralrimiva | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) → ∀ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) ) |
| 218 | iunss2 | ⊢ ( ∀ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ( 𝐴 ·o 𝑧 ) → ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) | |
| 219 | 217 218 | syl | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) → ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 220 | 219 | adantrl | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ⊆ ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 221 | 168 220 | eqssd | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) = ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
| 222 | oalimcl | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → Lim ( 𝐵 +o 𝑥 ) ) | |
| 223 | 59 222 | mpanr1 | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → Lim ( 𝐵 +o 𝑥 ) ) |
| 224 | 223 | ancoms | ⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → Lim ( 𝐵 +o 𝑥 ) ) |
| 225 | 224 | anim2i | ⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ 𝐵 ∈ On ) ) → ( 𝐴 ∈ On ∧ Lim ( 𝐵 +o 𝑥 ) ) ) |
| 226 | 225 | an12s | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ∈ On ∧ Lim ( 𝐵 +o 𝑥 ) ) ) |
| 227 | ovex | ⊢ ( 𝐵 +o 𝑥 ) ∈ V | |
| 228 | omlim | ⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 +o 𝑥 ) ∈ V ∧ Lim ( 𝐵 +o 𝑥 ) ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) | |
| 229 | 227 228 | mpanr1 | ⊢ ( ( 𝐴 ∈ On ∧ Lim ( 𝐵 +o 𝑥 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 230 | 226 229 | syl | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 231 | 230 | adantr | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 ·o 𝑧 ) ) |
| 232 | 21 | ad2antlr | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ·o 𝐵 ) ∈ On ) |
| 233 | 59 | jctl | ⊢ ( Lim 𝑥 → ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) |
| 234 | 233 | anim1ci | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) → ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) |
| 235 | omlimcl | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐴 ·o 𝑥 ) ) | |
| 236 | 234 235 | sylan | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐴 ·o 𝑥 ) ) |
| 237 | 236 | adantlrr | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → Lim ( 𝐴 ·o 𝑥 ) ) |
| 238 | ovex | ⊢ ( 𝐴 ·o 𝑥 ) ∈ V | |
| 239 | 237 238 | jctil | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝑥 ) ∈ V ∧ Lim ( 𝐴 ·o 𝑥 ) ) ) |
| 240 | oalim | ⊢ ( ( ( 𝐴 ·o 𝐵 ) ∈ On ∧ ( ( 𝐴 ·o 𝑥 ) ∈ V ∧ Lim ( 𝐴 ·o 𝑥 ) ) ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) | |
| 241 | 232 239 240 | syl2anc | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
| 242 | 241 | adantrr | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) = ∪ 𝑤 ∈ ( 𝐴 ·o 𝑥 ) ( ( 𝐴 ·o 𝐵 ) +o 𝑤 ) ) |
| 243 | 221 231 242 | 3eqtr4d | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ∅ ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) |
| 244 | 243 | exp43 | ⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) ) |
| 245 | 244 | com3l | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐴 → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) ) |
| 246 | 245 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
| 247 | 84 246 | oe0lem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
| 248 | 247 | com12 | ⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ·o ( 𝐵 +o 𝑦 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑦 ) ) → ( 𝐴 ·o ( 𝐵 +o 𝑥 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝑥 ) ) ) ) ) |
| 249 | 5 10 15 20 30 58 248 | tfinds3 | ⊢ ( 𝐶 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) |
| 250 | 249 | expdcom | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐶 ∈ On → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) ) ) |
| 251 | 250 | 3imp | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ·o ( 𝐵 +o 𝐶 ) ) = ( ( 𝐴 ·o 𝐵 ) +o ( 𝐴 ·o 𝐶 ) ) ) |