This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication with successor. Definition 8.15 of TakeutiZaring p. 62. Definition 2.5 of Schloeder p. 4. (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omsuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o suc 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsuc | ⊢ ( 𝐵 ∈ On → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ suc 𝐵 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) ) |
| 3 | onsuc | ⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) | |
| 4 | omv | ⊢ ( ( 𝐴 ∈ On ∧ suc 𝐵 ∈ On ) → ( 𝐴 ·o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ suc 𝐵 ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o suc 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ suc 𝐵 ) ) |
| 6 | ovex | ⊢ ( 𝐴 ·o 𝐵 ) ∈ V | |
| 7 | oveq1 | ⊢ ( 𝑥 = ( 𝐴 ·o 𝐵 ) → ( 𝑥 +o 𝐴 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) | |
| 8 | eqid | ⊢ ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) | |
| 9 | ovex | ⊢ ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( ( 𝐴 ·o 𝐵 ) ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |
| 11 | 6 10 | ax-mp | ⊢ ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( 𝐴 ·o 𝐵 ) ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) |
| 12 | omv | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) | |
| 13 | 12 | fveq2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( 𝐴 ·o 𝐵 ) ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) ) |
| 14 | 11 13 | eqtr3id | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) = ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ‘ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) ) |
| 15 | 2 5 14 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o suc 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐴 ) ) |