This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is less than or equal to its sum with another. Theorem 21 of Suppes p. 209. Lemma 3.3 of Schloeder p. 7. (Contributed by NM, 7-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaword2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | ⊢ ∅ ⊆ 𝐵 | |
| 2 | 0elon | ⊢ ∅ ∈ On | |
| 3 | oawordri | ⊢ ( ( ∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐵 → ( ∅ +o 𝐴 ) ⊆ ( 𝐵 +o 𝐴 ) ) ) | |
| 4 | 2 3 | mp3an1 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐵 → ( ∅ +o 𝐴 ) ⊆ ( 𝐵 +o 𝐴 ) ) ) |
| 5 | oa0r | ⊢ ( 𝐴 ∈ On → ( ∅ +o 𝐴 ) = 𝐴 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ +o 𝐴 ) = 𝐴 ) |
| 7 | 6 | sseq1d | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( ∅ +o 𝐴 ) ⊆ ( 𝐵 +o 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) ) |
| 8 | 4 7 | sylibd | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐵 → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) ) |
| 9 | 1 8 | mpi | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) |
| 10 | 9 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐵 +o 𝐴 ) ) |