This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal addition with zero. Proposition 8.3 of TakeutiZaring p. 57. Lemma 2.14 of Schloeder p. 5. (Contributed by NM, 5-May-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oa0r | ⊢ ( 𝐴 ∈ On → ( ∅ +o 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( ∅ +o 𝑥 ) = ( ∅ +o ∅ ) ) | |
| 2 | id | ⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o ∅ ) = ∅ ) ) |
| 4 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( ∅ +o 𝑥 ) = ( ∅ +o 𝑦 ) ) | |
| 5 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o 𝑦 ) = 𝑦 ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ∅ +o 𝑥 ) = ( ∅ +o suc 𝑦 ) ) | |
| 8 | id | ⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o suc 𝑦 ) = suc 𝑦 ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( ∅ +o 𝑥 ) = ( ∅ +o 𝐴 ) ) | |
| 11 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ( ∅ +o 𝐴 ) = 𝐴 ) ) |
| 13 | 0elon | ⊢ ∅ ∈ On | |
| 14 | oa0 | ⊢ ( ∅ ∈ On → ( ∅ +o ∅ ) = ∅ ) | |
| 15 | 13 14 | ax-mp | ⊢ ( ∅ +o ∅ ) = ∅ |
| 16 | oasuc | ⊢ ( ( ∅ ∈ On ∧ 𝑦 ∈ On ) → ( ∅ +o suc 𝑦 ) = suc ( ∅ +o 𝑦 ) ) | |
| 17 | 13 16 | mpan | ⊢ ( 𝑦 ∈ On → ( ∅ +o suc 𝑦 ) = suc ( ∅ +o 𝑦 ) ) |
| 18 | suceq | ⊢ ( ( ∅ +o 𝑦 ) = 𝑦 → suc ( ∅ +o 𝑦 ) = suc 𝑦 ) | |
| 19 | 17 18 | sylan9eq | ⊢ ( ( 𝑦 ∈ On ∧ ( ∅ +o 𝑦 ) = 𝑦 ) → ( ∅ +o suc 𝑦 ) = suc 𝑦 ) |
| 20 | 19 | ex | ⊢ ( 𝑦 ∈ On → ( ( ∅ +o 𝑦 ) = 𝑦 → ( ∅ +o suc 𝑦 ) = suc 𝑦 ) ) |
| 21 | iuneq2 | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = 𝑦 → ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 𝑦 ) | |
| 22 | uniiun | ⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 | |
| 23 | 21 22 | eqtr4di | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = 𝑦 → ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = ∪ 𝑥 ) |
| 24 | vex | ⊢ 𝑥 ∈ V | |
| 25 | oalim | ⊢ ( ( ∅ ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ∅ +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) ) | |
| 26 | 13 25 | mpan | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( ∅ +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) ) |
| 27 | 24 26 | mpan | ⊢ ( Lim 𝑥 → ( ∅ +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) ) |
| 28 | limuni | ⊢ ( Lim 𝑥 → 𝑥 = ∪ 𝑥 ) | |
| 29 | 27 28 | eqeq12d | ⊢ ( Lim 𝑥 → ( ( ∅ +o 𝑥 ) = 𝑥 ↔ ∪ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = ∪ 𝑥 ) ) |
| 30 | 23 29 | imbitrrid | ⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( ∅ +o 𝑦 ) = 𝑦 → ( ∅ +o 𝑥 ) = 𝑥 ) ) |
| 31 | 3 6 9 12 15 20 30 | tfinds | ⊢ ( 𝐴 ∈ On → ( ∅ +o 𝐴 ) = 𝐴 ) |