This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylanblrc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| sylanblrc.2 | ⊢ 𝜒 | ||
| sylanblrc.3 | ⊢ ( 𝜃 ↔ ( 𝜓 ∧ 𝜒 ) ) | ||
| Assertion | sylanblrc | ⊢ ( 𝜑 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanblrc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | sylanblrc.2 | ⊢ 𝜒 | |
| 3 | sylanblrc.3 | ⊢ ( 𝜃 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
| 4 | 2 | a1i | ⊢ ( 𝜑 → 𝜒 ) |
| 5 | 1 4 3 | sylanbrc | ⊢ ( 𝜑 → 𝜃 ) |