This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal addition with a limit ordinal. Definition 8.1 of TakeutiZaring p. 56. Definition 2.3 of Schloeder p. 4. (Contributed by NM, 3-Aug-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oalim | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) | |
| 2 | simpr | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → Lim 𝐵 ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) |
| 4 | rdglim2a | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝐵 ) → ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) |
| 6 | oav | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝐵 ) ) | |
| 7 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) | |
| 8 | oav | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 +o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐴 +o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) |
| 10 | 9 | anassrs | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 +o 𝑥 ) = ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) |
| 11 | 10 | iuneq2dv | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) |
| 12 | 6 11 | eqeq12d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ↔ ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) ) |
| 13 | 12 | adantrr | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ↔ ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( rec ( ( 𝑦 ∈ V ↦ suc 𝑦 ) , 𝐴 ) ‘ 𝑥 ) ) ) |
| 14 | 5 13 | mpbird | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ Lim 𝐵 ) ) → ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) |
| 15 | 3 14 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 +o 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 +o 𝑥 ) ) |