This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3jaod.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 3jaod.2 | ⊢ ( 𝜑 → ( 𝜃 → 𝜒 ) ) | ||
| 3jaod.3 | ⊢ ( 𝜑 → ( 𝜏 → 𝜒 ) ) | ||
| Assertion | 3jaod | ⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaod.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | 3jaod.2 | ⊢ ( 𝜑 → ( 𝜃 → 𝜒 ) ) | |
| 3 | 3jaod.3 | ⊢ ( 𝜑 → ( 𝜏 → 𝜒 ) ) | |
| 4 | 3jao | ⊢ ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜒 ) ∧ ( 𝜏 → 𝜒 ) ) → ( ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) → 𝜒 ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) → 𝜒 ) ) |