This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal addition. Proposition 8.7 of TakeutiZaring p. 59. (Contributed by NM, 7-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oawordri | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o ∅ ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o ∅ ) ) | |
| 3 | 1 2 | sseq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝑦 ) ) | |
| 5 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝑦 ) ) | |
| 6 | 4 5 | sseq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o suc 𝑦 ) ) | |
| 8 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o suc 𝑦 ) ) | |
| 9 | 7 8 | sseq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 +o 𝑥 ) = ( 𝐴 +o 𝐶 ) ) | |
| 11 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝐶 ) ) | |
| 12 | 10 11 | sseq12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) |
| 13 | oa0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 15 | oa0 | ⊢ ( 𝐵 ∈ On → ( 𝐵 +o ∅ ) = 𝐵 ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o ∅ ) = 𝐵 ) |
| 17 | 14 16 | sseq12d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ↔ 𝐴 ⊆ 𝐵 ) ) |
| 18 | 17 | biimpar | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o ∅ ) ⊆ ( 𝐵 +o ∅ ) ) |
| 19 | oacl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 +o 𝑦 ) ∈ On ) | |
| 20 | eloni | ⊢ ( ( 𝐴 +o 𝑦 ) ∈ On → Ord ( 𝐴 +o 𝑦 ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → Ord ( 𝐴 +o 𝑦 ) ) |
| 22 | oacl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o 𝑦 ) ∈ On ) | |
| 23 | eloni | ⊢ ( ( 𝐵 +o 𝑦 ) ∈ On → Ord ( 𝐵 +o 𝑦 ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → Ord ( 𝐵 +o 𝑦 ) ) |
| 25 | ordsucsssuc | ⊢ ( ( Ord ( 𝐴 +o 𝑦 ) ∧ Ord ( 𝐵 +o 𝑦 ) ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) | |
| 26 | 21 24 25 | syl2an | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) |
| 27 | 26 | anandirs | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) |
| 28 | oasuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) | |
| 29 | 28 | adantlr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
| 30 | oasuc | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) | |
| 31 | 30 | adantll | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) |
| 32 | 29 31 | sseq12d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ↔ suc ( 𝐴 +o 𝑦 ) ⊆ suc ( 𝐵 +o 𝑦 ) ) ) |
| 33 | 27 32 | bitr4d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) ↔ ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) |
| 34 | 33 | biimpd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) |
| 35 | 34 | expcom | ⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) ) |
| 36 | 35 | adantrd | ⊢ ( 𝑦 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o suc 𝑦 ) ⊆ ( 𝐵 +o suc 𝑦 ) ) ) ) |
| 37 | vex | ⊢ 𝑥 ∈ V | |
| 38 | ss2iun | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) | |
| 39 | oalim | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ) | |
| 40 | 39 | adantlr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐴 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ) |
| 41 | oalim | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐵 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) | |
| 42 | 41 | adantll | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐵 +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) |
| 43 | 40 42 | sseq12d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐵 +o 𝑦 ) ) ) |
| 44 | 38 43 | imbitrrid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) |
| 45 | 37 44 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) |
| 46 | 45 | expcom | ⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) ) |
| 47 | 46 | adantrd | ⊢ ( Lim 𝑥 → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑦 ) ⊆ ( 𝐵 +o 𝑦 ) → ( 𝐴 +o 𝑥 ) ⊆ ( 𝐵 +o 𝑥 ) ) ) ) |
| 48 | 3 6 9 12 18 36 47 | tfinds3 | ⊢ ( 𝐶 ∈ On → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) |
| 49 | 48 | exp4c | ⊢ ( 𝐶 ∈ On → ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) ) ) |
| 50 | 49 | 3imp231 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 +o 𝐶 ) ⊆ ( 𝐵 +o 𝐶 ) ) ) |