This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of an element of an ordinal class is a subset of it. Lemma 1.14 of Schloeder p. 2. (Contributed by NM, 21-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsucss | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord | ⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → Ord 𝐴 ) | |
| 2 | ordnbtwn | ⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) | |
| 3 | imnan | ⊢ ( ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) ↔ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) | |
| 4 | 2 3 | sylibr | ⊢ ( Ord 𝐴 → ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) ) |
| 5 | 4 | adantr | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) ) |
| 6 | ordsuc | ⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) | |
| 7 | ordtri1 | ⊢ ( ( Ord suc 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) ) | |
| 8 | 6 7 | sylanb | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) ) |
| 9 | 5 8 | sylibrd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
| 10 | 1 9 | sylan | ⊢ ( ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
| 11 | 10 | exp31 | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) ) ) |
| 12 | 11 | pm2.43b | ⊢ ( 𝐴 ∈ 𝐵 → ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) ) |
| 13 | 12 | pm2.43b | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |