This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal exponentiation. Lemma 3.19 of Schloeder p. 10. (Contributed by NM, 6-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oewordi | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 2 | ordgt0ge1 | ⊢ ( Ord 𝐶 → ( ∅ ∈ 𝐶 ↔ 1o ⊆ 𝐶 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ 1o ⊆ 𝐶 ) ) |
| 4 | 1on | ⊢ 1o ∈ On | |
| 5 | onsseleq | ⊢ ( ( 1o ∈ On ∧ 𝐶 ∈ On ) → ( 1o ⊆ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐶 ∈ On → ( 1o ⊆ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) |
| 7 | 3 6 | bitrd | ⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 ↔ ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) ) ) |
| 9 | ondif2 | ⊢ ( 𝐶 ∈ ( On ∖ 2o ) ↔ ( 𝐶 ∈ On ∧ 1o ∈ 𝐶 ) ) | |
| 10 | oeword | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) | |
| 11 | 10 | biimpd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
| 12 | 11 | 3expia | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 13 | 9 12 | biimtrrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐶 ∈ On ∧ 1o ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 14 | 13 | expd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ On → ( 1o ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) ) |
| 15 | 14 | 3impia | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 16 | oe1m | ⊢ ( 𝐴 ∈ On → ( 1o ↑o 𝐴 ) = 1o ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐴 ) = 1o ) |
| 18 | oe1m | ⊢ ( 𝐵 ∈ On → ( 1o ↑o 𝐵 ) = 1o ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐵 ) = 1o ) |
| 20 | 17 19 | eqtr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐴 ) = ( 1o ↑o 𝐵 ) ) |
| 21 | eqimss | ⊢ ( ( 1o ↑o 𝐴 ) = ( 1o ↑o 𝐵 ) → ( 1o ↑o 𝐴 ) ⊆ ( 1o ↑o 𝐵 ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o ↑o 𝐴 ) ⊆ ( 1o ↑o 𝐵 ) ) |
| 23 | oveq1 | ⊢ ( 1o = 𝐶 → ( 1o ↑o 𝐴 ) = ( 𝐶 ↑o 𝐴 ) ) | |
| 24 | oveq1 | ⊢ ( 1o = 𝐶 → ( 1o ↑o 𝐵 ) = ( 𝐶 ↑o 𝐵 ) ) | |
| 25 | 23 24 | sseq12d | ⊢ ( 1o = 𝐶 → ( ( 1o ↑o 𝐴 ) ⊆ ( 1o ↑o 𝐵 ) ↔ ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
| 26 | 22 25 | syl5ibcom | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 1o = 𝐶 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
| 27 | 26 | 3adant3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o = 𝐶 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |
| 28 | 27 | a1dd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 1o = 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 29 | 15 28 | jaod | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 1o ∈ 𝐶 ∨ 1o = 𝐶 ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 30 | 8 29 | sylbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 31 | 30 | imp | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↑o 𝐴 ) ⊆ ( 𝐶 ↑o 𝐵 ) ) ) |