This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that A is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ondif2 | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o ) ) | |
| 2 | 1on | ⊢ 1o ∈ On | |
| 3 | ontri1 | ⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ) → ( 𝐴 ⊆ 1o ↔ ¬ 1o ∈ 𝐴 ) ) | |
| 4 | onsssuc | ⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ) → ( 𝐴 ⊆ 1o ↔ 𝐴 ∈ suc 1o ) ) | |
| 5 | df-2o | ⊢ 2o = suc 1o | |
| 6 | 5 | eleq2i | ⊢ ( 𝐴 ∈ 2o ↔ 𝐴 ∈ suc 1o ) |
| 7 | 4 6 | bitr4di | ⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ) → ( 𝐴 ⊆ 1o ↔ 𝐴 ∈ 2o ) ) |
| 8 | 3 7 | bitr3d | ⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ) → ( ¬ 1o ∈ 𝐴 ↔ 𝐴 ∈ 2o ) ) |
| 9 | 2 8 | mpan2 | ⊢ ( 𝐴 ∈ On → ( ¬ 1o ∈ 𝐴 ↔ 𝐴 ∈ 2o ) ) |
| 10 | 9 | con1bid | ⊢ ( 𝐴 ∈ On → ( ¬ 𝐴 ∈ 2o ↔ 1o ∈ 𝐴 ) ) |
| 11 | 10 | pm5.32i | ⊢ ( ( 𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ) |
| 12 | 1 11 | bitri | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ) |