This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal exponentiation with a limit exponent. Part of Exercise 4.36 of Mendelson p. 250. (Contributed by NM, 6-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oelim2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) | |
| 2 | 0ellim | ⊢ ( Lim 𝐵 → ∅ ∈ 𝐵 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ∅ ∈ 𝐵 ) |
| 4 | oe0m1 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) | |
| 5 | 4 | biimpa | ⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
| 6 | 1 3 5 | syl2anc | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
| 7 | eldif | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 1o ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 1o ) ) | |
| 8 | limord | ⊢ ( Lim 𝐵 → Ord 𝐵 ) | |
| 9 | ordelon | ⊢ ( ( Ord 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) | |
| 10 | 8 9 | sylan | ⊢ ( ( Lim 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 11 | on0eln0 | ⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ 𝑥 ≠ ∅ ) ) | |
| 12 | el1o | ⊢ ( 𝑥 ∈ 1o ↔ 𝑥 = ∅ ) | |
| 13 | 12 | necon3bbii | ⊢ ( ¬ 𝑥 ∈ 1o ↔ 𝑥 ≠ ∅ ) |
| 14 | 11 13 | bitr4di | ⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ ¬ 𝑥 ∈ 1o ) ) |
| 15 | oe0m1 | ⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 ↔ ( ∅ ↑o 𝑥 ) = ∅ ) ) | |
| 16 | 15 | biimpd | ⊢ ( 𝑥 ∈ On → ( ∅ ∈ 𝑥 → ( ∅ ↑o 𝑥 ) = ∅ ) ) |
| 17 | 14 16 | sylbird | ⊢ ( 𝑥 ∈ On → ( ¬ 𝑥 ∈ 1o → ( ∅ ↑o 𝑥 ) = ∅ ) ) |
| 18 | 10 17 | syl | ⊢ ( ( Lim 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 1o → ( ∅ ↑o 𝑥 ) = ∅ ) ) |
| 19 | 18 | impr | ⊢ ( ( Lim 𝐵 ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 1o ) ) → ( ∅ ↑o 𝑥 ) = ∅ ) |
| 20 | 7 19 | sylan2b | ⊢ ( ( Lim 𝐵 ∧ 𝑥 ∈ ( 𝐵 ∖ 1o ) ) → ( ∅ ↑o 𝑥 ) = ∅ ) |
| 21 | 20 | iuneq2dv | ⊢ ( Lim 𝐵 → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ∅ ) |
| 22 | df-1o | ⊢ 1o = suc ∅ | |
| 23 | limsuc | ⊢ ( Lim 𝐵 → ( ∅ ∈ 𝐵 ↔ suc ∅ ∈ 𝐵 ) ) | |
| 24 | 2 23 | mpbid | ⊢ ( Lim 𝐵 → suc ∅ ∈ 𝐵 ) |
| 25 | 22 24 | eqeltrid | ⊢ ( Lim 𝐵 → 1o ∈ 𝐵 ) |
| 26 | 1on | ⊢ 1o ∈ On | |
| 27 | 26 | onirri | ⊢ ¬ 1o ∈ 1o |
| 28 | eldif | ⊢ ( 1o ∈ ( 𝐵 ∖ 1o ) ↔ ( 1o ∈ 𝐵 ∧ ¬ 1o ∈ 1o ) ) | |
| 29 | 25 27 28 | sylanblrc | ⊢ ( Lim 𝐵 → 1o ∈ ( 𝐵 ∖ 1o ) ) |
| 30 | ne0i | ⊢ ( 1o ∈ ( 𝐵 ∖ 1o ) → ( 𝐵 ∖ 1o ) ≠ ∅ ) | |
| 31 | iunconst | ⊢ ( ( 𝐵 ∖ 1o ) ≠ ∅ → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ∅ = ∅ ) | |
| 32 | 29 30 31 | 3syl | ⊢ ( Lim 𝐵 → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ∅ = ∅ ) |
| 33 | 21 32 | eqtrd | ⊢ ( Lim 𝐵 → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) = ∅ ) |
| 34 | 33 | adantl | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) = ∅ ) |
| 35 | 6 34 | eqtr4d | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) ) |
| 36 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) | |
| 37 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( ∅ ↑o 𝑥 ) ) | |
| 38 | 37 | iuneq2d | ⊢ ( 𝐴 = ∅ → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) ) |
| 39 | 36 38 | eqeq12d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ↔ ( ∅ ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( ∅ ↑o 𝑥 ) ) ) |
| 40 | 35 39 | imbitrrid | ⊢ ( 𝐴 = ∅ → ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) ) |
| 41 | 40 | impcom | ⊢ ( ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| 42 | oelim | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) ) | |
| 43 | limsuc | ⊢ ( Lim 𝐵 → ( 𝑦 ∈ 𝐵 ↔ suc 𝑦 ∈ 𝐵 ) ) | |
| 44 | 43 | biimpa | ⊢ ( ( Lim 𝐵 ∧ 𝑦 ∈ 𝐵 ) → suc 𝑦 ∈ 𝐵 ) |
| 45 | nsuceq0 | ⊢ suc 𝑦 ≠ ∅ | |
| 46 | dif1o | ⊢ ( suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ↔ ( suc 𝑦 ∈ 𝐵 ∧ suc 𝑦 ≠ ∅ ) ) | |
| 47 | 44 45 46 | sylanblrc | ⊢ ( ( Lim 𝐵 ∧ 𝑦 ∈ 𝐵 ) → suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ) |
| 48 | 47 | ex | ⊢ ( Lim 𝐵 → ( 𝑦 ∈ 𝐵 → suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ) ) |
| 49 | 48 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ) ) |
| 50 | sssucid | ⊢ 𝑦 ⊆ suc 𝑦 | |
| 51 | ordelon | ⊢ ( ( Ord 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ On ) | |
| 52 | 8 51 | sylan | ⊢ ( ( Lim 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ On ) |
| 53 | onsuc | ⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) | |
| 54 | 52 53 | jccir | ⊢ ( ( Lim 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ) ) |
| 55 | id | ⊢ ( ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ) | |
| 56 | 55 | 3expa | ⊢ ( ( ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ) ∧ 𝐴 ∈ On ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ) |
| 57 | 56 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ) ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ) |
| 58 | 54 57 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ) |
| 59 | 58 | anassrs | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ) |
| 60 | oewordi | ⊢ ( ( ( 𝑦 ∈ On ∧ suc 𝑦 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ⊆ suc 𝑦 → ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) | |
| 61 | 59 60 | sylan | ⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ⊆ suc 𝑦 → ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 62 | 61 | an32s | ⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ⊆ suc 𝑦 → ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 63 | 50 62 | mpi | ⊢ ( ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) |
| 64 | 63 | ex | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 65 | 49 64 | jcad | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ( suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) ) |
| 66 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) | |
| 67 | 66 | sseq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o 𝑥 ) ↔ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) ) |
| 68 | 67 | rspcev | ⊢ ( ( suc 𝑦 ∈ ( 𝐵 ∖ 1o ) ∧ ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o suc 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o 𝑥 ) ) |
| 69 | 65 68 | syl6 | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o 𝑥 ) ) ) |
| 70 | 69 | ralrimiv | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o 𝑥 ) ) |
| 71 | iunss2 | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ⊆ ( 𝐴 ↑o 𝑥 ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) ⊆ ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) | |
| 72 | 70 71 | syl | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) ⊆ ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| 73 | difss | ⊢ ( 𝐵 ∖ 1o ) ⊆ 𝐵 | |
| 74 | iunss1 | ⊢ ( ( 𝐵 ∖ 1o ) ⊆ 𝐵 → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) ) | |
| 75 | 73 74 | ax-mp | ⊢ ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) |
| 76 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) | |
| 77 | 76 | cbviunv | ⊢ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) |
| 78 | 75 77 | sseqtri | ⊢ ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) |
| 79 | 78 | a1i | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ⊆ ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) ) |
| 80 | 72 79 | eqssd | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝐵 ) ∧ ∅ ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| 81 | 80 | adantlrl | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ∪ 𝑦 ∈ 𝐵 ( 𝐴 ↑o 𝑦 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| 82 | 42 81 | eqtrd | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |
| 83 | 41 82 | oe0lem | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑥 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑥 ) ) |