This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal addition is associative. Theorem 25 of Suppes p. 211. Theorem 4.2 of Schloeder p. 11. (Contributed by NM, 10-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaass | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( ( 𝐴 +o 𝐵 ) +o ∅ ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o ∅ ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 +o ( 𝐵 +o ∅ ) ) ) |
| 4 | 1 3 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ↔ ( ( 𝐴 +o 𝐵 ) +o ∅ ) = ( 𝐴 +o ( 𝐵 +o ∅ ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) ) | |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝑦 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 8 | 5 7 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ↔ ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) ) | |
| 10 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o suc 𝑦 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ↔ ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 +o 𝑥 ) = ( 𝐵 +o 𝐶 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ↔ ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) ) |
| 17 | oacl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ∈ On ) | |
| 18 | oa0 | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ On → ( ( 𝐴 +o 𝐵 ) +o ∅ ) = ( 𝐴 +o 𝐵 ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) +o ∅ ) = ( 𝐴 +o 𝐵 ) ) |
| 20 | oa0 | ⊢ ( 𝐵 ∈ On → ( 𝐵 +o ∅ ) = 𝐵 ) | |
| 21 | 20 | oveq2d | ⊢ ( 𝐵 ∈ On → ( 𝐴 +o ( 𝐵 +o ∅ ) ) = ( 𝐴 +o 𝐵 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o ( 𝐵 +o ∅ ) ) = ( 𝐴 +o 𝐵 ) ) |
| 23 | 19 22 | eqtr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) +o ∅ ) = ( 𝐴 +o ( 𝐵 +o ∅ ) ) ) |
| 24 | suceq | ⊢ ( ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → suc ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) | |
| 25 | oasuc | ⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = suc ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) ) | |
| 26 | 17 25 | sylan | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = suc ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) ) |
| 27 | oasuc | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o suc 𝑦 ) = suc ( 𝐵 +o 𝑦 ) ) | |
| 28 | 27 | oveq2d | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) = ( 𝐴 +o suc ( 𝐵 +o 𝑦 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) = ( 𝐴 +o suc ( 𝐵 +o 𝑦 ) ) ) |
| 30 | oacl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 +o 𝑦 ) ∈ On ) | |
| 31 | oasuc | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 +o 𝑦 ) ∈ On ) → ( 𝐴 +o suc ( 𝐵 +o 𝑦 ) ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) | |
| 32 | 30 31 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝐴 +o suc ( 𝐵 +o 𝑦 ) ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 33 | 29 32 | eqtrd | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) ) → ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 34 | 33 | anassrs | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 35 | 26 34 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) ↔ suc ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = suc ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) |
| 36 | 24 35 | imbitrrid | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) ) ) |
| 37 | 36 | expcom | ⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → ( ( 𝐴 +o 𝐵 ) +o suc 𝑦 ) = ( 𝐴 +o ( 𝐵 +o suc 𝑦 ) ) ) ) ) |
| 38 | iuneq2 | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) | |
| 39 | 38 | adantl | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) → ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 40 | vex | ⊢ 𝑥 ∈ V | |
| 41 | oalim | ⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) ) | |
| 42 | 40 41 | mpanr1 | ⊢ ( ( ( 𝐴 +o 𝐵 ) ∈ On ∧ Lim 𝑥 ) → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) ) |
| 43 | 17 42 | sylan | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ Lim 𝑥 ) → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) ) |
| 44 | 43 | ancoms | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) ) |
| 46 | oalimcl | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → Lim ( 𝐵 +o 𝑥 ) ) | |
| 47 | 40 46 | mpanr1 | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → Lim ( 𝐵 +o 𝑥 ) ) |
| 48 | 47 | ancoms | ⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → Lim ( 𝐵 +o 𝑥 ) ) |
| 49 | ovex | ⊢ ( 𝐵 +o 𝑥 ) ∈ V | |
| 50 | oalim | ⊢ ( ( 𝐴 ∈ On ∧ ( ( 𝐵 +o 𝑥 ) ∈ V ∧ Lim ( 𝐵 +o 𝑥 ) ) ) → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) ) | |
| 51 | 49 50 | mpanr1 | ⊢ ( ( 𝐴 ∈ On ∧ Lim ( 𝐵 +o 𝑥 ) ) → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) ) |
| 52 | 48 51 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ 𝐵 ∈ On ) ) → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) ) |
| 53 | limelon | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) | |
| 54 | 40 53 | mpan | ⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
| 55 | oacl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐵 +o 𝑥 ) ∈ On ) | |
| 56 | 55 | ancoms | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 +o 𝑥 ) ∈ On ) |
| 57 | onelon | ⊢ ( ( ( 𝐵 +o 𝑥 ) ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → 𝑧 ∈ On ) | |
| 58 | 57 | ex | ⊢ ( ( 𝐵 +o 𝑥 ) ∈ On → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → 𝑧 ∈ On ) ) |
| 59 | 56 58 | syl | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → 𝑧 ∈ On ) ) |
| 60 | 59 | adantld | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → 𝑧 ∈ On ) ) |
| 61 | 60 | adantl | ⊢ ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → 𝑧 ∈ On ) ) |
| 62 | 0ellim | ⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) | |
| 63 | onelss | ⊢ ( 𝐵 ∈ On → ( 𝑧 ∈ 𝐵 → 𝑧 ⊆ 𝐵 ) ) | |
| 64 | 20 | sseq2d | ⊢ ( 𝐵 ∈ On → ( 𝑧 ⊆ ( 𝐵 +o ∅ ) ↔ 𝑧 ⊆ 𝐵 ) ) |
| 65 | 63 64 | sylibrd | ⊢ ( 𝐵 ∈ On → ( 𝑧 ∈ 𝐵 → 𝑧 ⊆ ( 𝐵 +o ∅ ) ) ) |
| 66 | 65 | imp | ⊢ ( ( 𝐵 ∈ On ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ⊆ ( 𝐵 +o ∅ ) ) |
| 67 | oveq2 | ⊢ ( 𝑦 = ∅ → ( 𝐵 +o 𝑦 ) = ( 𝐵 +o ∅ ) ) | |
| 68 | 67 | sseq2d | ⊢ ( 𝑦 = ∅ → ( 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ↔ 𝑧 ⊆ ( 𝐵 +o ∅ ) ) ) |
| 69 | 68 | rspcev | ⊢ ( ( ∅ ∈ 𝑥 ∧ 𝑧 ⊆ ( 𝐵 +o ∅ ) ) → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) |
| 70 | 62 66 69 | syl2an | ⊢ ( ( Lim 𝑥 ∧ ( 𝐵 ∈ On ∧ 𝑧 ∈ 𝐵 ) ) → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) |
| 71 | 70 | expr | ⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ( 𝑧 ∈ 𝐵 → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 72 | 71 | adantrl | ⊢ ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑧 ∈ 𝐵 → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 73 | 72 | adantrr | ⊢ ( ( Lim 𝑥 ∧ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∧ 𝑧 ∈ On ) ) ) → ( 𝑧 ∈ 𝐵 → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 74 | oawordex | ⊢ ( ( 𝐵 ∈ On ∧ 𝑧 ∈ On ) → ( 𝐵 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ On ( 𝐵 +o 𝑦 ) = 𝑧 ) ) | |
| 75 | 74 | ad2ant2l | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∧ 𝑧 ∈ On ) ) → ( 𝐵 ⊆ 𝑧 ↔ ∃ 𝑦 ∈ On ( 𝐵 +o 𝑦 ) = 𝑧 ) ) |
| 76 | oaord | ⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑦 ∈ 𝑥 ↔ ( 𝐵 +o 𝑦 ) ∈ ( 𝐵 +o 𝑥 ) ) ) | |
| 77 | 76 | 3expb | ⊢ ( ( 𝑦 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑦 ∈ 𝑥 ↔ ( 𝐵 +o 𝑦 ) ∈ ( 𝐵 +o 𝑥 ) ) ) |
| 78 | eleq1 | ⊢ ( ( 𝐵 +o 𝑦 ) = 𝑧 → ( ( 𝐵 +o 𝑦 ) ∈ ( 𝐵 +o 𝑥 ) ↔ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ) | |
| 79 | 77 78 | sylan9bb | ⊢ ( ( ( 𝑦 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( 𝐵 +o 𝑦 ) = 𝑧 ) → ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ) |
| 80 | 79 | an32s | ⊢ ( ( ( 𝑦 ∈ On ∧ ( 𝐵 +o 𝑦 ) = 𝑧 ) ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ) |
| 81 | 80 | biimpar | ⊢ ( ( ( ( 𝑦 ∈ On ∧ ( 𝐵 +o 𝑦 ) = 𝑧 ) ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → 𝑦 ∈ 𝑥 ) |
| 82 | eqimss2 | ⊢ ( ( 𝐵 +o 𝑦 ) = 𝑧 → 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) | |
| 83 | 82 | ad3antlr | ⊢ ( ( ( ( 𝑦 ∈ On ∧ ( 𝐵 +o 𝑦 ) = 𝑧 ) ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) |
| 84 | 81 83 | jca | ⊢ ( ( ( ( 𝑦 ∈ On ∧ ( 𝐵 +o 𝑦 ) = 𝑧 ) ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑦 ∈ 𝑥 ∧ 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 85 | 84 | anasss | ⊢ ( ( ( 𝑦 ∈ On ∧ ( 𝐵 +o 𝑦 ) = 𝑧 ) ∧ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ) → ( 𝑦 ∈ 𝑥 ∧ 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 86 | 85 | expcom | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( ( 𝑦 ∈ On ∧ ( 𝐵 +o 𝑦 ) = 𝑧 ) → ( 𝑦 ∈ 𝑥 ∧ 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) ) |
| 87 | 86 | reximdv2 | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( ∃ 𝑦 ∈ On ( 𝐵 +o 𝑦 ) = 𝑧 → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 88 | 87 | adantrr | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∧ 𝑧 ∈ On ) ) → ( ∃ 𝑦 ∈ On ( 𝐵 +o 𝑦 ) = 𝑧 → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 89 | 75 88 | sylbid | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∧ 𝑧 ∈ On ) ) → ( 𝐵 ⊆ 𝑧 → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 90 | 89 | adantl | ⊢ ( ( Lim 𝑥 ∧ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∧ 𝑧 ∈ On ) ) ) → ( 𝐵 ⊆ 𝑧 → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) |
| 91 | eloni | ⊢ ( 𝑧 ∈ On → Ord 𝑧 ) | |
| 92 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 93 | ordtri2or | ⊢ ( ( Ord 𝑧 ∧ Ord 𝐵 ) → ( 𝑧 ∈ 𝐵 ∨ 𝐵 ⊆ 𝑧 ) ) | |
| 94 | 91 92 93 | syl2anr | ⊢ ( ( 𝐵 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑧 ∈ 𝐵 ∨ 𝐵 ⊆ 𝑧 ) ) |
| 95 | 94 | ad2ant2l | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∧ 𝑧 ∈ On ) ) → ( 𝑧 ∈ 𝐵 ∨ 𝐵 ⊆ 𝑧 ) ) |
| 96 | 95 | adantl | ⊢ ( ( Lim 𝑥 ∧ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∧ 𝑧 ∈ On ) ) ) → ( 𝑧 ∈ 𝐵 ∨ 𝐵 ⊆ 𝑧 ) ) |
| 97 | 73 90 96 | mpjaod | ⊢ ( ( Lim 𝑥 ∧ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∧ 𝑧 ∈ On ) ) ) → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) |
| 98 | 97 | exp45 | ⊢ ( Lim 𝑥 → ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → ( 𝑧 ∈ On → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) ) ) |
| 99 | 98 | imp | ⊢ ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → ( 𝑧 ∈ On → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) ) |
| 100 | 99 | adantld | ⊢ ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑧 ∈ On → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) ) ) |
| 101 | 100 | imp32 | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ∧ 𝑧 ∈ On ) ) → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ) |
| 102 | simplrr | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ∧ 𝑧 ∈ On ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ On ) | |
| 103 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) | |
| 104 | 103 30 | sylan2 | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐵 +o 𝑦 ) ∈ On ) |
| 105 | 104 | exp32 | ⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → ( 𝐵 +o 𝑦 ) ∈ On ) ) ) |
| 106 | 105 | com12 | ⊢ ( 𝑥 ∈ On → ( 𝐵 ∈ On → ( 𝑦 ∈ 𝑥 → ( 𝐵 +o 𝑦 ) ∈ On ) ) ) |
| 107 | 106 | imp31 | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐵 +o 𝑦 ) ∈ On ) |
| 108 | 107 | ad4ant24 | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ∧ 𝑧 ∈ On ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐵 +o 𝑦 ) ∈ On ) |
| 109 | simpll | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ∧ 𝑧 ∈ On ) → 𝐴 ∈ On ) | |
| 110 | 109 | ad2antlr | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ∧ 𝑧 ∈ On ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐴 ∈ On ) |
| 111 | oaword | ⊢ ( ( 𝑧 ∈ On ∧ ( 𝐵 +o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ↔ ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) | |
| 112 | 102 108 110 111 | syl3anc | ⊢ ( ( ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ∧ 𝑧 ∈ On ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ↔ ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) |
| 113 | 112 | rexbidva | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ∧ 𝑧 ∈ On ) ) → ( ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝐵 +o 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) |
| 114 | 101 113 | mpbid | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) ∧ 𝑧 ∈ On ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 115 | 114 | exp32 | ⊢ ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ( 𝑧 ∈ On → ∃ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) ) |
| 116 | 61 115 | mpdd | ⊢ ( ( Lim 𝑥 ∧ ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) ) → ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) |
| 117 | 116 | exp32 | ⊢ ( Lim 𝑥 → ( 𝑥 ∈ On → ( 𝐵 ∈ On → ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) ) ) |
| 118 | 54 117 | mpd | ⊢ ( Lim 𝑥 → ( 𝐵 ∈ On → ( ( 𝐴 ∈ On ∧ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) ) |
| 119 | 118 | exp4a | ⊢ ( Lim 𝑥 → ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) ) ) |
| 120 | 119 | imp31 | ⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ On ) → ( 𝑧 ∈ ( 𝐵 +o 𝑥 ) → ∃ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) |
| 121 | 120 | ralrimiv | ⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ On ) → ∀ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∃ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 122 | iunss2 | ⊢ ( ∀ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ∃ 𝑦 ∈ 𝑥 ( 𝐴 +o 𝑧 ) ⊆ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) | |
| 123 | 121 122 | syl | ⊢ ( ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) ∧ 𝐴 ∈ On ) → ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 124 | 123 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ 𝐵 ∈ On ) ) → ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) ⊆ ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 125 | oaordi | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑦 ∈ 𝑥 → ( 𝐵 +o 𝑦 ) ∈ ( 𝐵 +o 𝑥 ) ) ) | |
| 126 | 125 | anim1d | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑦 ∈ 𝑥 ∧ 𝑤 ∈ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) → ( ( 𝐵 +o 𝑦 ) ∈ ( 𝐵 +o 𝑥 ) ∧ 𝑤 ∈ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) ) |
| 127 | oveq2 | ⊢ ( 𝑧 = ( 𝐵 +o 𝑦 ) → ( 𝐴 +o 𝑧 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) | |
| 128 | 127 | eleq2d | ⊢ ( 𝑧 = ( 𝐵 +o 𝑦 ) → ( 𝑤 ∈ ( 𝐴 +o 𝑧 ) ↔ 𝑤 ∈ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) ) |
| 129 | 128 | rspcev | ⊢ ( ( ( 𝐵 +o 𝑦 ) ∈ ( 𝐵 +o 𝑥 ) ∧ 𝑤 ∈ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) 𝑤 ∈ ( 𝐴 +o 𝑧 ) ) |
| 130 | 126 129 | syl6 | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑦 ∈ 𝑥 ∧ 𝑤 ∈ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) 𝑤 ∈ ( 𝐴 +o 𝑧 ) ) ) |
| 131 | 130 | expd | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑦 ∈ 𝑥 → ( 𝑤 ∈ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) 𝑤 ∈ ( 𝐴 +o 𝑧 ) ) ) ) |
| 132 | 131 | rexlimdv | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑦 ∈ 𝑥 𝑤 ∈ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) 𝑤 ∈ ( 𝐴 +o 𝑧 ) ) ) |
| 133 | eliun | ⊢ ( 𝑤 ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ↔ ∃ 𝑦 ∈ 𝑥 𝑤 ∈ ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) | |
| 134 | eliun | ⊢ ( 𝑤 ∈ ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) ↔ ∃ 𝑧 ∈ ( 𝐵 +o 𝑥 ) 𝑤 ∈ ( 𝐴 +o 𝑧 ) ) | |
| 135 | 132 133 134 | 3imtr4g | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑤 ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → 𝑤 ∈ ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) ) ) |
| 136 | 135 | ssrdv | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ⊆ ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) ) |
| 137 | 54 136 | sylan | ⊢ ( ( Lim 𝑥 ∧ 𝐵 ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ⊆ ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) ) |
| 138 | 137 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ 𝐵 ∈ On ) ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ⊆ ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) ) |
| 139 | 124 138 | eqssd | ⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ 𝐵 ∈ On ) ) → ∪ 𝑧 ∈ ( 𝐵 +o 𝑥 ) ( 𝐴 +o 𝑧 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 140 | 52 139 | eqtrd | ⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ 𝐵 ∈ On ) ) → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 141 | 140 | an12s | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 142 | 141 | adantr | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) → ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) |
| 143 | 39 45 142 | 3eqtr4d | ⊢ ( ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) ) → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ) |
| 144 | 143 | exp31 | ⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 +o 𝐵 ) +o 𝑦 ) = ( 𝐴 +o ( 𝐵 +o 𝑦 ) ) → ( ( 𝐴 +o 𝐵 ) +o 𝑥 ) = ( 𝐴 +o ( 𝐵 +o 𝑥 ) ) ) ) ) |
| 145 | 4 8 12 16 23 37 144 | tfinds3 | ⊢ ( 𝐶 ∈ On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) ) |
| 146 | 145 | com12 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ On → ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) ) |
| 147 | 146 | 3impia | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +o 𝐵 ) +o 𝐶 ) = ( 𝐴 +o ( 𝐵 +o 𝐶 ) ) ) |