This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Omega is a limit ordinal. Theorem 2.8 of BellMachover p. 473. Theorem 1.23 of Schloeder p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995) (Proof shortened by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limom | ⊢ Lim ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom | ⊢ Ord ω | |
| 2 | ordeleqon | ⊢ ( Ord ω ↔ ( ω ∈ On ∨ ω = On ) ) | |
| 3 | ordirr | ⊢ ( Ord ω → ¬ ω ∈ ω ) | |
| 4 | 1 3 | ax-mp | ⊢ ¬ ω ∈ ω |
| 5 | elom | ⊢ ( ω ∈ ω ↔ ( ω ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → ω ∈ 𝑥 ) ) ) | |
| 6 | 5 | baib | ⊢ ( ω ∈ On → ( ω ∈ ω ↔ ∀ 𝑥 ( Lim 𝑥 → ω ∈ 𝑥 ) ) ) |
| 7 | 4 6 | mtbii | ⊢ ( ω ∈ On → ¬ ∀ 𝑥 ( Lim 𝑥 → ω ∈ 𝑥 ) ) |
| 8 | limomss | ⊢ ( Lim 𝑥 → ω ⊆ 𝑥 ) | |
| 9 | limord | ⊢ ( Lim 𝑥 → Ord 𝑥 ) | |
| 10 | ordsseleq | ⊢ ( ( Ord ω ∧ Ord 𝑥 ) → ( ω ⊆ 𝑥 ↔ ( ω ∈ 𝑥 ∨ ω = 𝑥 ) ) ) | |
| 11 | 1 9 10 | sylancr | ⊢ ( Lim 𝑥 → ( ω ⊆ 𝑥 ↔ ( ω ∈ 𝑥 ∨ ω = 𝑥 ) ) ) |
| 12 | 8 11 | mpbid | ⊢ ( Lim 𝑥 → ( ω ∈ 𝑥 ∨ ω = 𝑥 ) ) |
| 13 | 12 | ord | ⊢ ( Lim 𝑥 → ( ¬ ω ∈ 𝑥 → ω = 𝑥 ) ) |
| 14 | limeq | ⊢ ( ω = 𝑥 → ( Lim ω ↔ Lim 𝑥 ) ) | |
| 15 | 14 | biimprcd | ⊢ ( Lim 𝑥 → ( ω = 𝑥 → Lim ω ) ) |
| 16 | 13 15 | syld | ⊢ ( Lim 𝑥 → ( ¬ ω ∈ 𝑥 → Lim ω ) ) |
| 17 | 16 | con1d | ⊢ ( Lim 𝑥 → ( ¬ Lim ω → ω ∈ 𝑥 ) ) |
| 18 | 17 | com12 | ⊢ ( ¬ Lim ω → ( Lim 𝑥 → ω ∈ 𝑥 ) ) |
| 19 | 18 | alrimiv | ⊢ ( ¬ Lim ω → ∀ 𝑥 ( Lim 𝑥 → ω ∈ 𝑥 ) ) |
| 20 | 7 19 | nsyl2 | ⊢ ( ω ∈ On → Lim ω ) |
| 21 | limon | ⊢ Lim On | |
| 22 | limeq | ⊢ ( ω = On → ( Lim ω ↔ Lim On ) ) | |
| 23 | 21 22 | mpbiri | ⊢ ( ω = On → Lim ω ) |
| 24 | 20 23 | jaoi | ⊢ ( ( ω ∈ On ∨ ω = On ) → Lim ω ) |
| 25 | 2 24 | sylbi | ⊢ ( Ord ω → Lim ω ) |
| 26 | 1 25 | ax-mp | ⊢ Lim ω |