This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplind.sk | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| mplind.sv | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| mplind.sy | ⊢ 𝑌 = ( 𝐼 mPoly 𝑅 ) | ||
| mplind.sp | ⊢ + = ( +g ‘ 𝑌 ) | ||
| mplind.st | ⊢ · = ( .r ‘ 𝑌 ) | ||
| mplind.sc | ⊢ 𝐶 = ( algSc ‘ 𝑌 ) | ||
| mplind.sb | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| mplind.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐻 ) | ||
| mplind.t | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐻 ) | ||
| mplind.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ) | ||
| mplind.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ 𝐻 ) | ||
| mplind.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| mplind.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplind.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| Assertion | mplind | ⊢ ( 𝜑 → 𝑋 ∈ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplind.sk | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | mplind.sv | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 3 | mplind.sy | ⊢ 𝑌 = ( 𝐼 mPoly 𝑅 ) | |
| 4 | mplind.sp | ⊢ + = ( +g ‘ 𝑌 ) | |
| 5 | mplind.st | ⊢ · = ( .r ‘ 𝑌 ) | |
| 6 | mplind.sc | ⊢ 𝐶 = ( algSc ‘ 𝑌 ) | |
| 7 | mplind.sb | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 8 | mplind.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐻 ) | |
| 9 | mplind.t | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐻 ) | |
| 10 | mplind.s | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ) | |
| 11 | mplind.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ 𝐻 ) | |
| 12 | mplind.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 13 | mplind.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 14 | mplind.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 15 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 16 | 15 13 14 | psrassa | ⊢ ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ) |
| 17 | inss2 | ⊢ ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 | |
| 18 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 19 | 14 18 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 20 | 15 3 7 13 19 | mplsubrg | ⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 21 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 22 | 21 | subrgss | ⊢ ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 23 | 20 22 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 24 | 17 23 | sstrid | ⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 25 | 3 2 7 13 19 | mvrf2 | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |
| 26 | 25 | ffnd | ⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
| 27 | 11 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐻 ) |
| 28 | fnfvrnss | ⊢ ( ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐻 ) → ran 𝑉 ⊆ 𝐻 ) | |
| 29 | 26 27 28 | syl2anc | ⊢ ( 𝜑 → ran 𝑉 ⊆ 𝐻 ) |
| 30 | 25 | frnd | ⊢ ( 𝜑 → ran 𝑉 ⊆ 𝐵 ) |
| 31 | 29 30 | ssind | ⊢ ( 𝜑 → ran 𝑉 ⊆ ( 𝐻 ∩ 𝐵 ) ) |
| 32 | eqid | ⊢ ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 33 | 32 21 | aspss | ⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ∧ ( 𝐻 ∩ 𝐵 ) ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ran 𝑉 ⊆ ( 𝐻 ∩ 𝐵 ) ) → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) ⊆ ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) ) |
| 34 | 16 24 31 33 | syl3anc | ⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) ⊆ ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) ) |
| 35 | 3 15 2 32 13 14 | mplbas2 | ⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = ( Base ‘ 𝑌 ) ) |
| 36 | 35 7 | eqtr4di | ⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ran 𝑉 ) = 𝐵 ) |
| 37 | 17 | a1i | ⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ) |
| 38 | 3 | mplassa | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ AssAlg ) |
| 39 | 13 14 38 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ AssAlg ) |
| 40 | eqid | ⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) | |
| 41 | 6 40 | asclrhm | ⊢ ( 𝑌 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) ) |
| 42 | 39 41 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) ) |
| 43 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) = ( 1r ‘ ( Scalar ‘ 𝑌 ) ) | |
| 44 | eqid | ⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) | |
| 45 | 43 44 | rhm1 | ⊢ ( 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) → ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) = ( 1r ‘ 𝑌 ) ) |
| 46 | 42 45 | syl | ⊢ ( 𝜑 → ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) = ( 1r ‘ 𝑌 ) ) |
| 47 | fveq2 | ⊢ ( 𝑥 = ( 1r ‘ ( Scalar ‘ 𝑌 ) ) → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) | |
| 48 | 47 | eleq1d | ⊢ ( 𝑥 = ( 1r ‘ ( Scalar ‘ 𝑌 ) ) → ( ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ↔ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ 𝐻 ) ) |
| 49 | 10 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐾 ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ) |
| 50 | 3 13 14 | mplsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑌 ) ) |
| 51 | 50 19 | eqeltrrd | ⊢ ( 𝜑 → ( Scalar ‘ 𝑌 ) ∈ Ring ) |
| 52 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) | |
| 53 | 52 43 | ringidcl | ⊢ ( ( Scalar ‘ 𝑌 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 54 | 51 53 | syl | ⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 55 | 50 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 56 | 1 55 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 57 | 54 56 | eleqtrrd | ⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ 𝐾 ) |
| 58 | 48 49 57 | rspcdva | ⊢ ( 𝜑 → ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ 𝐻 ) |
| 59 | 46 58 | eqeltrrd | ⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ∈ 𝐻 ) |
| 60 | assaring | ⊢ ( 𝑌 ∈ AssAlg → 𝑌 ∈ Ring ) | |
| 61 | 39 60 | syl | ⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| 62 | 7 44 | ringidcl | ⊢ ( 𝑌 ∈ Ring → ( 1r ‘ 𝑌 ) ∈ 𝐵 ) |
| 63 | 61 62 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ∈ 𝐵 ) |
| 64 | 59 63 | elind | ⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 65 | 64 | ne0d | ⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ≠ ∅ ) |
| 66 | elinel1 | ⊢ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑧 ∈ 𝐻 ) | |
| 67 | elinel1 | ⊢ ( 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑤 ∈ 𝐻 ) | |
| 68 | 66 67 | anim12i | ⊢ ( ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( 𝑧 ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) |
| 69 | 8 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) → ( 𝑧 + 𝑤 ) ∈ 𝐻 ) |
| 70 | 68 69 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 + 𝑤 ) ∈ 𝐻 ) |
| 71 | assalmod | ⊢ ( 𝑌 ∈ AssAlg → 𝑌 ∈ LMod ) | |
| 72 | 39 71 | syl | ⊢ ( 𝜑 → 𝑌 ∈ LMod ) |
| 73 | lmodgrp | ⊢ ( 𝑌 ∈ LMod → 𝑌 ∈ Grp ) | |
| 74 | 72 73 | syl | ⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 75 | 74 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ Grp ) |
| 76 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) | |
| 77 | 76 | elin2d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ 𝐵 ) |
| 78 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) | |
| 79 | 78 | elin2d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ 𝐵 ) |
| 80 | 7 4 | grpcl | ⊢ ( ( 𝑌 ∈ Grp ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑧 + 𝑤 ) ∈ 𝐵 ) |
| 81 | 75 77 79 80 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 + 𝑤 ) ∈ 𝐵 ) |
| 82 | 70 81 | elind | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 83 | 82 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 84 | 83 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 85 | eqid | ⊢ ( invg ‘ 𝑌 ) = ( invg ‘ 𝑌 ) | |
| 86 | 61 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑌 ∈ Ring ) |
| 87 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) | |
| 88 | 87 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 89 | 7 5 44 85 86 88 | ringnegl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) · 𝑧 ) = ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ) |
| 90 | simpl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝜑 ) | |
| 91 | rhmghm | ⊢ ( 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) RingHom 𝑌 ) → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) GrpHom 𝑌 ) ) | |
| 92 | 42 91 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) GrpHom 𝑌 ) ) |
| 93 | eqid | ⊢ ( invg ‘ ( Scalar ‘ 𝑌 ) ) = ( invg ‘ ( Scalar ‘ 𝑌 ) ) | |
| 94 | 52 93 85 | ghminv | ⊢ ( ( 𝐶 ∈ ( ( Scalar ‘ 𝑌 ) GrpHom 𝑌 ) ∧ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ) |
| 95 | 92 54 94 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ) |
| 96 | 46 | fveq2d | ⊢ ( 𝜑 → ( ( invg ‘ 𝑌 ) ‘ ( 𝐶 ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ) |
| 97 | 95 96 | eqtrd | ⊢ ( 𝜑 → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) = ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ) |
| 98 | fveq2 | ⊢ ( 𝑥 = ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ) | |
| 99 | 98 | eleq1d | ⊢ ( 𝑥 = ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) → ( ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ↔ ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ∈ 𝐻 ) ) |
| 100 | ringgrp | ⊢ ( ( Scalar ‘ 𝑌 ) ∈ Ring → ( Scalar ‘ 𝑌 ) ∈ Grp ) | |
| 101 | 51 100 | syl | ⊢ ( 𝜑 → ( Scalar ‘ 𝑌 ) ∈ Grp ) |
| 102 | 52 93 | grpinvcl | ⊢ ( ( ( Scalar ‘ 𝑌 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 103 | 101 54 102 | syl2anc | ⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 104 | 103 56 | eleqtrrd | ⊢ ( 𝜑 → ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ∈ 𝐾 ) |
| 105 | 99 49 104 | rspcdva | ⊢ ( 𝜑 → ( 𝐶 ‘ ( ( invg ‘ ( Scalar ‘ 𝑌 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑌 ) ) ) ) ∈ 𝐻 ) |
| 106 | 97 105 | eqeltrrd | ⊢ ( 𝜑 → ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ∈ 𝐻 ) |
| 107 | 106 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ∈ 𝐻 ) |
| 108 | 87 | elin1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑧 ∈ 𝐻 ) |
| 109 | 9 | caovclg | ⊢ ( ( 𝜑 ∧ ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) ∈ 𝐻 ∧ 𝑧 ∈ 𝐻 ) ) → ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) · 𝑧 ) ∈ 𝐻 ) |
| 110 | 90 107 108 109 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( ( invg ‘ 𝑌 ) ‘ ( 1r ‘ 𝑌 ) ) · 𝑧 ) ∈ 𝐻 ) |
| 111 | 89 110 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ 𝐻 ) |
| 112 | 74 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → 𝑌 ∈ Grp ) |
| 113 | 7 85 | grpinvcl | ⊢ ( ( 𝑌 ∈ Grp ∧ 𝑧 ∈ 𝐵 ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ 𝐵 ) |
| 114 | 112 88 113 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ 𝐵 ) |
| 115 | 111 114 | elind | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 116 | 84 115 | jca | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) |
| 117 | 116 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) |
| 118 | 7 4 85 | issubg2 | ⊢ ( 𝑌 ∈ Grp → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ∧ ( 𝐻 ∩ 𝐵 ) ≠ ∅ ∧ ∀ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) ) |
| 119 | 74 118 | syl | ⊢ ( 𝜑 → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ∧ ( 𝐻 ∩ 𝐵 ) ≠ ∅ ∧ ∀ 𝑧 ∈ ( 𝐻 ∩ 𝐵 ) ( ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 + 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ( ( invg ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) ) |
| 120 | 37 65 117 119 | mpbir3and | ⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ) |
| 121 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑥 ∈ 𝐻 ) | |
| 122 | elinel1 | ⊢ ( 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) → 𝑦 ∈ 𝐻 ) | |
| 123 | 121 122 | anim12i | ⊢ ( ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) → ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) |
| 124 | 123 9 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐻 ) |
| 125 | 61 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ Ring ) |
| 126 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ) | |
| 127 | 126 | elin2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 128 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) | |
| 129 | 128 | elin2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 130 | 7 5 | ringcl | ⊢ ( ( 𝑌 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 131 | 125 127 129 130 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 132 | 124 131 | elind | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 133 | 132 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 134 | 7 44 5 | issubrg2 | ⊢ ( 𝑌 ∈ Ring → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ( 1r ‘ 𝑌 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
| 135 | 61 134 | syl | ⊢ ( 𝜑 → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ( 1r ‘ 𝑌 ) ∈ ( 𝐻 ∩ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐻 ∩ 𝐵 ) ∀ 𝑦 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑥 · 𝑦 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
| 136 | 120 64 133 135 | mpbir3and | ⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ) |
| 137 | 3 15 7 | mplval2 | ⊢ 𝑌 = ( ( 𝐼 mPwSer 𝑅 ) ↾s 𝐵 ) |
| 138 | 137 | subsubrg | ⊢ ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ) ) ) |
| 139 | 138 | simprbda | ⊢ ( ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ 𝑌 ) ) → ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 140 | 20 136 139 | syl2anc | ⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 141 | assalmod | ⊢ ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg → ( 𝐼 mPwSer 𝑅 ) ∈ LMod ) | |
| 142 | 16 141 | syl | ⊢ ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ LMod ) |
| 143 | 15 3 7 13 19 | mpllss | ⊢ ( 𝜑 → 𝐵 ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 144 | 39 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ AssAlg ) |
| 145 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | |
| 146 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) | |
| 147 | 146 | elin2d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ 𝐵 ) |
| 148 | eqid | ⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) | |
| 149 | 6 40 52 7 5 148 | asclmul1 | ⊢ ( ( 𝑌 ∈ AssAlg ∧ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ) |
| 150 | 144 145 147 149 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ) |
| 151 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ 𝑧 ) ) | |
| 152 | 151 | eleq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ↔ ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ) ) |
| 153 | 49 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ∀ 𝑥 ∈ 𝐾 ( 𝐶 ‘ 𝑥 ) ∈ 𝐻 ) |
| 154 | 56 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 155 | 145 154 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑧 ∈ 𝐾 ) |
| 156 | 152 153 155 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ) |
| 157 | 146 | elin1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑤 ∈ 𝐻 ) |
| 158 | 156 157 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) |
| 159 | 9 | caovclg | ⊢ ( ( 𝜑 ∧ ( ( 𝐶 ‘ 𝑧 ) ∈ 𝐻 ∧ 𝑤 ∈ 𝐻 ) ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) ∈ 𝐻 ) |
| 160 | 158 159 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( ( 𝐶 ‘ 𝑧 ) · 𝑤 ) ∈ 𝐻 ) |
| 161 | 150 160 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ 𝐻 ) |
| 162 | 72 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → 𝑌 ∈ LMod ) |
| 163 | 7 40 148 52 | lmodvscl | ⊢ ( ( 𝑌 ∈ LMod ∧ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ 𝐵 ) |
| 164 | 162 145 147 163 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ 𝐵 ) |
| 165 | 161 164 | elind | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 166 | 165 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 167 | eqid | ⊢ ( LSubSp ‘ 𝑌 ) = ( LSubSp ‘ 𝑌 ) | |
| 168 | 40 52 7 148 167 | islss4 | ⊢ ( 𝑌 ∈ LMod → ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
| 169 | 72 168 | syl | ⊢ ( 𝜑 → ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( SubGrp ‘ 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∀ 𝑤 ∈ ( 𝐻 ∩ 𝐵 ) ( 𝑧 ( ·𝑠 ‘ 𝑌 ) 𝑤 ) ∈ ( 𝐻 ∩ 𝐵 ) ) ) ) |
| 170 | 120 166 169 | mpbir2and | ⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ) |
| 171 | eqid | ⊢ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 172 | 137 171 167 | lsslss | ⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ LMod ∧ 𝐵 ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ↔ ( ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ⊆ 𝐵 ) ) ) |
| 173 | 172 | simprbda | ⊢ ( ( ( ( 𝐼 mPwSer 𝑅 ) ∈ LMod ∧ 𝐵 ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ 𝑌 ) ) → ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 174 | 142 143 170 173 | syl21anc | ⊢ ( 𝜑 → ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 175 | 32 21 171 | aspid | ⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝐻 ∩ 𝐵 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) = ( 𝐻 ∩ 𝐵 ) ) |
| 176 | 16 140 174 175 | syl3anc | ⊢ ( 𝜑 → ( ( AlgSpan ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ ( 𝐻 ∩ 𝐵 ) ) = ( 𝐻 ∩ 𝐵 ) ) |
| 177 | 34 36 176 | 3sstr3d | ⊢ ( 𝜑 → 𝐵 ⊆ ( 𝐻 ∩ 𝐵 ) ) |
| 178 | 177 12 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ∩ 𝐵 ) ) |
| 179 | 178 | elin1d | ⊢ ( 𝜑 → 𝑋 ∈ 𝐻 ) |