This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghminv.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| ghminv.y | ⊢ 𝑀 = ( invg ‘ 𝑆 ) | ||
| ghminv.z | ⊢ 𝑁 = ( invg ‘ 𝑇 ) | ||
| Assertion | ghminv | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghminv.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | ghminv.y | ⊢ 𝑀 = ( invg ‘ 𝑆 ) | |
| 3 | ghminv.z | ⊢ 𝑁 = ( invg ‘ 𝑇 ) | |
| 4 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 7 | 1 5 6 2 | grprinv | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝑆 ) ( 𝑀 ‘ 𝑋 ) ) = ( 0g ‘ 𝑆 ) ) |
| 8 | 4 7 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝑆 ) ( 𝑀 ‘ 𝑋 ) ) = ( 0g ‘ 𝑆 ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑆 ) ( 𝑀 ‘ 𝑋 ) ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) |
| 10 | 1 2 | grpinvcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ∈ 𝐵 ) |
| 11 | 4 10 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 13 | 1 5 12 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑀 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑆 ) ( 𝑀 ‘ 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 14 | 11 13 | mpd3an3 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑆 ) ( 𝑀 ‘ 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 15 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 16 | 6 15 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 18 | 9 14 17 | 3eqtr3d | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝑇 ) ) |
| 19 | ghmgrp2 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → 𝑇 ∈ Grp ) |
| 21 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 22 | 1 21 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 23 | 22 | ffvelcdmda | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) |
| 24 | 22 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 25 | 24 11 | ffvelcdmd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑇 ) ) |
| 26 | 21 12 15 3 | grpinvid1 | ⊢ ( ( 𝑇 ∈ Grp ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝑇 ) ) ) |
| 27 | 20 23 25 26 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝑇 ) ) ) |
| 28 | 18 27 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) |
| 29 | 28 | eqcomd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |