This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubrg2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| issubrg2.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| issubrg2.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | issubrg2 | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrg2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | issubrg2.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | issubrg2.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | subrgsubg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 5 | 2 | subrg1cl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 1 ∈ 𝐴 ) |
| 6 | 3 | subrgmcl | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 7 | 6 | 3expb | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 8 | 7 | ralrimivva | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) |
| 9 | 4 5 8 | 3jca | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) |
| 10 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝑅 ∈ Ring ) | |
| 11 | simpr1 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 12 | eqid | ⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) | |
| 13 | 12 | subgbas | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 14 | 11 13 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 15 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 16 | 12 15 | ressplusg | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 17 | 11 16 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 18 | 12 3 | ressmulr | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 19 | 11 18 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 20 | 12 | subggrp | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Grp ) |
| 21 | 11 20 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑅 ↾s 𝐴 ) ∈ Grp ) |
| 22 | simpr3 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) | |
| 23 | oveq1 | ⊢ ( 𝑥 = 𝑢 → ( 𝑥 · 𝑦 ) = ( 𝑢 · 𝑦 ) ) | |
| 24 | 23 | eleq1d | ⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 · 𝑦 ) ∈ 𝐴 ↔ ( 𝑢 · 𝑦 ) ∈ 𝐴 ) ) |
| 25 | oveq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝑢 · 𝑦 ) = ( 𝑢 · 𝑣 ) ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 · 𝑦 ) ∈ 𝐴 ↔ ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
| 27 | 24 26 | rspc2v | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
| 28 | 22 27 | syl5com | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) ) |
| 29 | 28 | 3impib | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑢 · 𝑣 ) ∈ 𝐴 ) |
| 30 | 1 | subgss | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → 𝐴 ⊆ 𝐵 ) |
| 31 | 11 30 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ⊆ 𝐵 ) |
| 32 | 31 | sseld | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝐴 → 𝑢 ∈ 𝐵 ) ) |
| 33 | 31 | sseld | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ 𝐴 → 𝑣 ∈ 𝐵 ) ) |
| 34 | 31 | sseld | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑤 ∈ 𝐴 → 𝑤 ∈ 𝐵 ) ) |
| 35 | 32 33 34 | 3anim123d | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 36 | 35 | imp | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) |
| 37 | 1 3 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
| 38 | 37 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
| 39 | 36 38 | syldan | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑢 · 𝑣 ) · 𝑤 ) = ( 𝑢 · ( 𝑣 · 𝑤 ) ) ) |
| 40 | 1 15 3 | ringdi | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
| 41 | 40 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
| 42 | 36 41 | syldan | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑢 · ( 𝑣 ( +g ‘ 𝑅 ) 𝑤 ) ) = ( ( 𝑢 · 𝑣 ) ( +g ‘ 𝑅 ) ( 𝑢 · 𝑤 ) ) ) |
| 43 | 1 15 3 | ringdir | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
| 44 | 43 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
| 45 | 36 44 | syldan | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑢 ( +g ‘ 𝑅 ) 𝑣 ) · 𝑤 ) = ( ( 𝑢 · 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑣 · 𝑤 ) ) ) |
| 46 | simpr2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 1 ∈ 𝐴 ) | |
| 47 | 32 | imp | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝐵 ) |
| 48 | 1 3 2 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵 ) → ( 1 · 𝑢 ) = 𝑢 ) |
| 49 | 48 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐵 ) → ( 1 · 𝑢 ) = 𝑢 ) |
| 50 | 47 49 | syldan | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 1 · 𝑢 ) = 𝑢 ) |
| 51 | 1 3 2 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵 ) → ( 𝑢 · 1 ) = 𝑢 ) |
| 52 | 51 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐵 ) → ( 𝑢 · 1 ) = 𝑢 ) |
| 53 | 47 52 | syldan | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 · 1 ) = 𝑢 ) |
| 54 | 14 17 19 21 29 39 42 45 46 50 53 | isringd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝑅 ↾s 𝐴 ) ∈ Ring ) |
| 55 | 31 46 | jca | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) |
| 56 | 1 2 | issubrg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴 ) ) ) |
| 57 | 10 54 55 56 | syl21anbrc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) |
| 58 | 57 | ex | ⊢ ( 𝑅 ∈ Ring → ( ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ) |
| 59 | 9 58 | impbid2 | ⊢ ( 𝑅 ∈ Ring → ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 1 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 · 𝑦 ) ∈ 𝐴 ) ) ) |