This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 4 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 6 | 1 2 3 4 5 | isassa | ⊢ ( 𝑊 ∈ AssAlg ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑧 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
| 7 | 6 | simplbi | ⊢ ( 𝑊 ∈ AssAlg → ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ) |
| 8 | 7 | simprd | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |