This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplind.sk | |- K = ( Base ` R ) |
|
| mplind.sv | |- V = ( I mVar R ) |
||
| mplind.sy | |- Y = ( I mPoly R ) |
||
| mplind.sp | |- .+ = ( +g ` Y ) |
||
| mplind.st | |- .x. = ( .r ` Y ) |
||
| mplind.sc | |- C = ( algSc ` Y ) |
||
| mplind.sb | |- B = ( Base ` Y ) |
||
| mplind.p | |- ( ( ph /\ ( x e. H /\ y e. H ) ) -> ( x .+ y ) e. H ) |
||
| mplind.t | |- ( ( ph /\ ( x e. H /\ y e. H ) ) -> ( x .x. y ) e. H ) |
||
| mplind.s | |- ( ( ph /\ x e. K ) -> ( C ` x ) e. H ) |
||
| mplind.v | |- ( ( ph /\ x e. I ) -> ( V ` x ) e. H ) |
||
| mplind.x | |- ( ph -> X e. B ) |
||
| mplind.i | |- ( ph -> I e. W ) |
||
| mplind.r | |- ( ph -> R e. CRing ) |
||
| Assertion | mplind | |- ( ph -> X e. H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplind.sk | |- K = ( Base ` R ) |
|
| 2 | mplind.sv | |- V = ( I mVar R ) |
|
| 3 | mplind.sy | |- Y = ( I mPoly R ) |
|
| 4 | mplind.sp | |- .+ = ( +g ` Y ) |
|
| 5 | mplind.st | |- .x. = ( .r ` Y ) |
|
| 6 | mplind.sc | |- C = ( algSc ` Y ) |
|
| 7 | mplind.sb | |- B = ( Base ` Y ) |
|
| 8 | mplind.p | |- ( ( ph /\ ( x e. H /\ y e. H ) ) -> ( x .+ y ) e. H ) |
|
| 9 | mplind.t | |- ( ( ph /\ ( x e. H /\ y e. H ) ) -> ( x .x. y ) e. H ) |
|
| 10 | mplind.s | |- ( ( ph /\ x e. K ) -> ( C ` x ) e. H ) |
|
| 11 | mplind.v | |- ( ( ph /\ x e. I ) -> ( V ` x ) e. H ) |
|
| 12 | mplind.x | |- ( ph -> X e. B ) |
|
| 13 | mplind.i | |- ( ph -> I e. W ) |
|
| 14 | mplind.r | |- ( ph -> R e. CRing ) |
|
| 15 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 16 | 15 13 14 | psrassa | |- ( ph -> ( I mPwSer R ) e. AssAlg ) |
| 17 | inss2 | |- ( H i^i B ) C_ B |
|
| 18 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 19 | 14 18 | syl | |- ( ph -> R e. Ring ) |
| 20 | 15 3 7 13 19 | mplsubrg | |- ( ph -> B e. ( SubRing ` ( I mPwSer R ) ) ) |
| 21 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 22 | 21 | subrgss | |- ( B e. ( SubRing ` ( I mPwSer R ) ) -> B C_ ( Base ` ( I mPwSer R ) ) ) |
| 23 | 20 22 | syl | |- ( ph -> B C_ ( Base ` ( I mPwSer R ) ) ) |
| 24 | 17 23 | sstrid | |- ( ph -> ( H i^i B ) C_ ( Base ` ( I mPwSer R ) ) ) |
| 25 | 3 2 7 13 19 | mvrf2 | |- ( ph -> V : I --> B ) |
| 26 | 25 | ffnd | |- ( ph -> V Fn I ) |
| 27 | 11 | ralrimiva | |- ( ph -> A. x e. I ( V ` x ) e. H ) |
| 28 | fnfvrnss | |- ( ( V Fn I /\ A. x e. I ( V ` x ) e. H ) -> ran V C_ H ) |
|
| 29 | 26 27 28 | syl2anc | |- ( ph -> ran V C_ H ) |
| 30 | 25 | frnd | |- ( ph -> ran V C_ B ) |
| 31 | 29 30 | ssind | |- ( ph -> ran V C_ ( H i^i B ) ) |
| 32 | eqid | |- ( AlgSpan ` ( I mPwSer R ) ) = ( AlgSpan ` ( I mPwSer R ) ) |
|
| 33 | 32 21 | aspss | |- ( ( ( I mPwSer R ) e. AssAlg /\ ( H i^i B ) C_ ( Base ` ( I mPwSer R ) ) /\ ran V C_ ( H i^i B ) ) -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ran V ) C_ ( ( AlgSpan ` ( I mPwSer R ) ) ` ( H i^i B ) ) ) |
| 34 | 16 24 31 33 | syl3anc | |- ( ph -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ran V ) C_ ( ( AlgSpan ` ( I mPwSer R ) ) ` ( H i^i B ) ) ) |
| 35 | 3 15 2 32 13 14 | mplbas2 | |- ( ph -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ran V ) = ( Base ` Y ) ) |
| 36 | 35 7 | eqtr4di | |- ( ph -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ran V ) = B ) |
| 37 | 17 | a1i | |- ( ph -> ( H i^i B ) C_ B ) |
| 38 | 3 | mplassa | |- ( ( I e. W /\ R e. CRing ) -> Y e. AssAlg ) |
| 39 | 13 14 38 | syl2anc | |- ( ph -> Y e. AssAlg ) |
| 40 | eqid | |- ( Scalar ` Y ) = ( Scalar ` Y ) |
|
| 41 | 6 40 | asclrhm | |- ( Y e. AssAlg -> C e. ( ( Scalar ` Y ) RingHom Y ) ) |
| 42 | 39 41 | syl | |- ( ph -> C e. ( ( Scalar ` Y ) RingHom Y ) ) |
| 43 | eqid | |- ( 1r ` ( Scalar ` Y ) ) = ( 1r ` ( Scalar ` Y ) ) |
|
| 44 | eqid | |- ( 1r ` Y ) = ( 1r ` Y ) |
|
| 45 | 43 44 | rhm1 | |- ( C e. ( ( Scalar ` Y ) RingHom Y ) -> ( C ` ( 1r ` ( Scalar ` Y ) ) ) = ( 1r ` Y ) ) |
| 46 | 42 45 | syl | |- ( ph -> ( C ` ( 1r ` ( Scalar ` Y ) ) ) = ( 1r ` Y ) ) |
| 47 | fveq2 | |- ( x = ( 1r ` ( Scalar ` Y ) ) -> ( C ` x ) = ( C ` ( 1r ` ( Scalar ` Y ) ) ) ) |
|
| 48 | 47 | eleq1d | |- ( x = ( 1r ` ( Scalar ` Y ) ) -> ( ( C ` x ) e. H <-> ( C ` ( 1r ` ( Scalar ` Y ) ) ) e. H ) ) |
| 49 | 10 | ralrimiva | |- ( ph -> A. x e. K ( C ` x ) e. H ) |
| 50 | 3 13 14 | mplsca | |- ( ph -> R = ( Scalar ` Y ) ) |
| 51 | 50 19 | eqeltrrd | |- ( ph -> ( Scalar ` Y ) e. Ring ) |
| 52 | eqid | |- ( Base ` ( Scalar ` Y ) ) = ( Base ` ( Scalar ` Y ) ) |
|
| 53 | 52 43 | ringidcl | |- ( ( Scalar ` Y ) e. Ring -> ( 1r ` ( Scalar ` Y ) ) e. ( Base ` ( Scalar ` Y ) ) ) |
| 54 | 51 53 | syl | |- ( ph -> ( 1r ` ( Scalar ` Y ) ) e. ( Base ` ( Scalar ` Y ) ) ) |
| 55 | 50 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` Y ) ) ) |
| 56 | 1 55 | eqtrid | |- ( ph -> K = ( Base ` ( Scalar ` Y ) ) ) |
| 57 | 54 56 | eleqtrrd | |- ( ph -> ( 1r ` ( Scalar ` Y ) ) e. K ) |
| 58 | 48 49 57 | rspcdva | |- ( ph -> ( C ` ( 1r ` ( Scalar ` Y ) ) ) e. H ) |
| 59 | 46 58 | eqeltrrd | |- ( ph -> ( 1r ` Y ) e. H ) |
| 60 | assaring | |- ( Y e. AssAlg -> Y e. Ring ) |
|
| 61 | 39 60 | syl | |- ( ph -> Y e. Ring ) |
| 62 | 7 44 | ringidcl | |- ( Y e. Ring -> ( 1r ` Y ) e. B ) |
| 63 | 61 62 | syl | |- ( ph -> ( 1r ` Y ) e. B ) |
| 64 | 59 63 | elind | |- ( ph -> ( 1r ` Y ) e. ( H i^i B ) ) |
| 65 | 64 | ne0d | |- ( ph -> ( H i^i B ) =/= (/) ) |
| 66 | elinel1 | |- ( z e. ( H i^i B ) -> z e. H ) |
|
| 67 | elinel1 | |- ( w e. ( H i^i B ) -> w e. H ) |
|
| 68 | 66 67 | anim12i | |- ( ( z e. ( H i^i B ) /\ w e. ( H i^i B ) ) -> ( z e. H /\ w e. H ) ) |
| 69 | 8 | caovclg | |- ( ( ph /\ ( z e. H /\ w e. H ) ) -> ( z .+ w ) e. H ) |
| 70 | 68 69 | sylan2 | |- ( ( ph /\ ( z e. ( H i^i B ) /\ w e. ( H i^i B ) ) ) -> ( z .+ w ) e. H ) |
| 71 | assalmod | |- ( Y e. AssAlg -> Y e. LMod ) |
|
| 72 | 39 71 | syl | |- ( ph -> Y e. LMod ) |
| 73 | lmodgrp | |- ( Y e. LMod -> Y e. Grp ) |
|
| 74 | 72 73 | syl | |- ( ph -> Y e. Grp ) |
| 75 | 74 | adantr | |- ( ( ph /\ ( z e. ( H i^i B ) /\ w e. ( H i^i B ) ) ) -> Y e. Grp ) |
| 76 | simprl | |- ( ( ph /\ ( z e. ( H i^i B ) /\ w e. ( H i^i B ) ) ) -> z e. ( H i^i B ) ) |
|
| 77 | 76 | elin2d | |- ( ( ph /\ ( z e. ( H i^i B ) /\ w e. ( H i^i B ) ) ) -> z e. B ) |
| 78 | simprr | |- ( ( ph /\ ( z e. ( H i^i B ) /\ w e. ( H i^i B ) ) ) -> w e. ( H i^i B ) ) |
|
| 79 | 78 | elin2d | |- ( ( ph /\ ( z e. ( H i^i B ) /\ w e. ( H i^i B ) ) ) -> w e. B ) |
| 80 | 7 4 | grpcl | |- ( ( Y e. Grp /\ z e. B /\ w e. B ) -> ( z .+ w ) e. B ) |
| 81 | 75 77 79 80 | syl3anc | |- ( ( ph /\ ( z e. ( H i^i B ) /\ w e. ( H i^i B ) ) ) -> ( z .+ w ) e. B ) |
| 82 | 70 81 | elind | |- ( ( ph /\ ( z e. ( H i^i B ) /\ w e. ( H i^i B ) ) ) -> ( z .+ w ) e. ( H i^i B ) ) |
| 83 | 82 | anassrs | |- ( ( ( ph /\ z e. ( H i^i B ) ) /\ w e. ( H i^i B ) ) -> ( z .+ w ) e. ( H i^i B ) ) |
| 84 | 83 | ralrimiva | |- ( ( ph /\ z e. ( H i^i B ) ) -> A. w e. ( H i^i B ) ( z .+ w ) e. ( H i^i B ) ) |
| 85 | eqid | |- ( invg ` Y ) = ( invg ` Y ) |
|
| 86 | 61 | adantr | |- ( ( ph /\ z e. ( H i^i B ) ) -> Y e. Ring ) |
| 87 | simpr | |- ( ( ph /\ z e. ( H i^i B ) ) -> z e. ( H i^i B ) ) |
|
| 88 | 87 | elin2d | |- ( ( ph /\ z e. ( H i^i B ) ) -> z e. B ) |
| 89 | 7 5 44 85 86 88 | ringnegl | |- ( ( ph /\ z e. ( H i^i B ) ) -> ( ( ( invg ` Y ) ` ( 1r ` Y ) ) .x. z ) = ( ( invg ` Y ) ` z ) ) |
| 90 | simpl | |- ( ( ph /\ z e. ( H i^i B ) ) -> ph ) |
|
| 91 | rhmghm | |- ( C e. ( ( Scalar ` Y ) RingHom Y ) -> C e. ( ( Scalar ` Y ) GrpHom Y ) ) |
|
| 92 | 42 91 | syl | |- ( ph -> C e. ( ( Scalar ` Y ) GrpHom Y ) ) |
| 93 | eqid | |- ( invg ` ( Scalar ` Y ) ) = ( invg ` ( Scalar ` Y ) ) |
|
| 94 | 52 93 85 | ghminv | |- ( ( C e. ( ( Scalar ` Y ) GrpHom Y ) /\ ( 1r ` ( Scalar ` Y ) ) e. ( Base ` ( Scalar ` Y ) ) ) -> ( C ` ( ( invg ` ( Scalar ` Y ) ) ` ( 1r ` ( Scalar ` Y ) ) ) ) = ( ( invg ` Y ) ` ( C ` ( 1r ` ( Scalar ` Y ) ) ) ) ) |
| 95 | 92 54 94 | syl2anc | |- ( ph -> ( C ` ( ( invg ` ( Scalar ` Y ) ) ` ( 1r ` ( Scalar ` Y ) ) ) ) = ( ( invg ` Y ) ` ( C ` ( 1r ` ( Scalar ` Y ) ) ) ) ) |
| 96 | 46 | fveq2d | |- ( ph -> ( ( invg ` Y ) ` ( C ` ( 1r ` ( Scalar ` Y ) ) ) ) = ( ( invg ` Y ) ` ( 1r ` Y ) ) ) |
| 97 | 95 96 | eqtrd | |- ( ph -> ( C ` ( ( invg ` ( Scalar ` Y ) ) ` ( 1r ` ( Scalar ` Y ) ) ) ) = ( ( invg ` Y ) ` ( 1r ` Y ) ) ) |
| 98 | fveq2 | |- ( x = ( ( invg ` ( Scalar ` Y ) ) ` ( 1r ` ( Scalar ` Y ) ) ) -> ( C ` x ) = ( C ` ( ( invg ` ( Scalar ` Y ) ) ` ( 1r ` ( Scalar ` Y ) ) ) ) ) |
|
| 99 | 98 | eleq1d | |- ( x = ( ( invg ` ( Scalar ` Y ) ) ` ( 1r ` ( Scalar ` Y ) ) ) -> ( ( C ` x ) e. H <-> ( C ` ( ( invg ` ( Scalar ` Y ) ) ` ( 1r ` ( Scalar ` Y ) ) ) ) e. H ) ) |
| 100 | ringgrp | |- ( ( Scalar ` Y ) e. Ring -> ( Scalar ` Y ) e. Grp ) |
|
| 101 | 51 100 | syl | |- ( ph -> ( Scalar ` Y ) e. Grp ) |
| 102 | 52 93 | grpinvcl | |- ( ( ( Scalar ` Y ) e. Grp /\ ( 1r ` ( Scalar ` Y ) ) e. ( Base ` ( Scalar ` Y ) ) ) -> ( ( invg ` ( Scalar ` Y ) ) ` ( 1r ` ( Scalar ` Y ) ) ) e. ( Base ` ( Scalar ` Y ) ) ) |
| 103 | 101 54 102 | syl2anc | |- ( ph -> ( ( invg ` ( Scalar ` Y ) ) ` ( 1r ` ( Scalar ` Y ) ) ) e. ( Base ` ( Scalar ` Y ) ) ) |
| 104 | 103 56 | eleqtrrd | |- ( ph -> ( ( invg ` ( Scalar ` Y ) ) ` ( 1r ` ( Scalar ` Y ) ) ) e. K ) |
| 105 | 99 49 104 | rspcdva | |- ( ph -> ( C ` ( ( invg ` ( Scalar ` Y ) ) ` ( 1r ` ( Scalar ` Y ) ) ) ) e. H ) |
| 106 | 97 105 | eqeltrrd | |- ( ph -> ( ( invg ` Y ) ` ( 1r ` Y ) ) e. H ) |
| 107 | 106 | adantr | |- ( ( ph /\ z e. ( H i^i B ) ) -> ( ( invg ` Y ) ` ( 1r ` Y ) ) e. H ) |
| 108 | 87 | elin1d | |- ( ( ph /\ z e. ( H i^i B ) ) -> z e. H ) |
| 109 | 9 | caovclg | |- ( ( ph /\ ( ( ( invg ` Y ) ` ( 1r ` Y ) ) e. H /\ z e. H ) ) -> ( ( ( invg ` Y ) ` ( 1r ` Y ) ) .x. z ) e. H ) |
| 110 | 90 107 108 109 | syl12anc | |- ( ( ph /\ z e. ( H i^i B ) ) -> ( ( ( invg ` Y ) ` ( 1r ` Y ) ) .x. z ) e. H ) |
| 111 | 89 110 | eqeltrrd | |- ( ( ph /\ z e. ( H i^i B ) ) -> ( ( invg ` Y ) ` z ) e. H ) |
| 112 | 74 | adantr | |- ( ( ph /\ z e. ( H i^i B ) ) -> Y e. Grp ) |
| 113 | 7 85 | grpinvcl | |- ( ( Y e. Grp /\ z e. B ) -> ( ( invg ` Y ) ` z ) e. B ) |
| 114 | 112 88 113 | syl2anc | |- ( ( ph /\ z e. ( H i^i B ) ) -> ( ( invg ` Y ) ` z ) e. B ) |
| 115 | 111 114 | elind | |- ( ( ph /\ z e. ( H i^i B ) ) -> ( ( invg ` Y ) ` z ) e. ( H i^i B ) ) |
| 116 | 84 115 | jca | |- ( ( ph /\ z e. ( H i^i B ) ) -> ( A. w e. ( H i^i B ) ( z .+ w ) e. ( H i^i B ) /\ ( ( invg ` Y ) ` z ) e. ( H i^i B ) ) ) |
| 117 | 116 | ralrimiva | |- ( ph -> A. z e. ( H i^i B ) ( A. w e. ( H i^i B ) ( z .+ w ) e. ( H i^i B ) /\ ( ( invg ` Y ) ` z ) e. ( H i^i B ) ) ) |
| 118 | 7 4 85 | issubg2 | |- ( Y e. Grp -> ( ( H i^i B ) e. ( SubGrp ` Y ) <-> ( ( H i^i B ) C_ B /\ ( H i^i B ) =/= (/) /\ A. z e. ( H i^i B ) ( A. w e. ( H i^i B ) ( z .+ w ) e. ( H i^i B ) /\ ( ( invg ` Y ) ` z ) e. ( H i^i B ) ) ) ) ) |
| 119 | 74 118 | syl | |- ( ph -> ( ( H i^i B ) e. ( SubGrp ` Y ) <-> ( ( H i^i B ) C_ B /\ ( H i^i B ) =/= (/) /\ A. z e. ( H i^i B ) ( A. w e. ( H i^i B ) ( z .+ w ) e. ( H i^i B ) /\ ( ( invg ` Y ) ` z ) e. ( H i^i B ) ) ) ) ) |
| 120 | 37 65 117 119 | mpbir3and | |- ( ph -> ( H i^i B ) e. ( SubGrp ` Y ) ) |
| 121 | elinel1 | |- ( x e. ( H i^i B ) -> x e. H ) |
|
| 122 | elinel1 | |- ( y e. ( H i^i B ) -> y e. H ) |
|
| 123 | 121 122 | anim12i | |- ( ( x e. ( H i^i B ) /\ y e. ( H i^i B ) ) -> ( x e. H /\ y e. H ) ) |
| 124 | 123 9 | sylan2 | |- ( ( ph /\ ( x e. ( H i^i B ) /\ y e. ( H i^i B ) ) ) -> ( x .x. y ) e. H ) |
| 125 | 61 | adantr | |- ( ( ph /\ ( x e. ( H i^i B ) /\ y e. ( H i^i B ) ) ) -> Y e. Ring ) |
| 126 | simprl | |- ( ( ph /\ ( x e. ( H i^i B ) /\ y e. ( H i^i B ) ) ) -> x e. ( H i^i B ) ) |
|
| 127 | 126 | elin2d | |- ( ( ph /\ ( x e. ( H i^i B ) /\ y e. ( H i^i B ) ) ) -> x e. B ) |
| 128 | simprr | |- ( ( ph /\ ( x e. ( H i^i B ) /\ y e. ( H i^i B ) ) ) -> y e. ( H i^i B ) ) |
|
| 129 | 128 | elin2d | |- ( ( ph /\ ( x e. ( H i^i B ) /\ y e. ( H i^i B ) ) ) -> y e. B ) |
| 130 | 7 5 | ringcl | |- ( ( Y e. Ring /\ x e. B /\ y e. B ) -> ( x .x. y ) e. B ) |
| 131 | 125 127 129 130 | syl3anc | |- ( ( ph /\ ( x e. ( H i^i B ) /\ y e. ( H i^i B ) ) ) -> ( x .x. y ) e. B ) |
| 132 | 124 131 | elind | |- ( ( ph /\ ( x e. ( H i^i B ) /\ y e. ( H i^i B ) ) ) -> ( x .x. y ) e. ( H i^i B ) ) |
| 133 | 132 | ralrimivva | |- ( ph -> A. x e. ( H i^i B ) A. y e. ( H i^i B ) ( x .x. y ) e. ( H i^i B ) ) |
| 134 | 7 44 5 | issubrg2 | |- ( Y e. Ring -> ( ( H i^i B ) e. ( SubRing ` Y ) <-> ( ( H i^i B ) e. ( SubGrp ` Y ) /\ ( 1r ` Y ) e. ( H i^i B ) /\ A. x e. ( H i^i B ) A. y e. ( H i^i B ) ( x .x. y ) e. ( H i^i B ) ) ) ) |
| 135 | 61 134 | syl | |- ( ph -> ( ( H i^i B ) e. ( SubRing ` Y ) <-> ( ( H i^i B ) e. ( SubGrp ` Y ) /\ ( 1r ` Y ) e. ( H i^i B ) /\ A. x e. ( H i^i B ) A. y e. ( H i^i B ) ( x .x. y ) e. ( H i^i B ) ) ) ) |
| 136 | 120 64 133 135 | mpbir3and | |- ( ph -> ( H i^i B ) e. ( SubRing ` Y ) ) |
| 137 | 3 15 7 | mplval2 | |- Y = ( ( I mPwSer R ) |`s B ) |
| 138 | 137 | subsubrg | |- ( B e. ( SubRing ` ( I mPwSer R ) ) -> ( ( H i^i B ) e. ( SubRing ` Y ) <-> ( ( H i^i B ) e. ( SubRing ` ( I mPwSer R ) ) /\ ( H i^i B ) C_ B ) ) ) |
| 139 | 138 | simprbda | |- ( ( B e. ( SubRing ` ( I mPwSer R ) ) /\ ( H i^i B ) e. ( SubRing ` Y ) ) -> ( H i^i B ) e. ( SubRing ` ( I mPwSer R ) ) ) |
| 140 | 20 136 139 | syl2anc | |- ( ph -> ( H i^i B ) e. ( SubRing ` ( I mPwSer R ) ) ) |
| 141 | assalmod | |- ( ( I mPwSer R ) e. AssAlg -> ( I mPwSer R ) e. LMod ) |
|
| 142 | 16 141 | syl | |- ( ph -> ( I mPwSer R ) e. LMod ) |
| 143 | 15 3 7 13 19 | mpllss | |- ( ph -> B e. ( LSubSp ` ( I mPwSer R ) ) ) |
| 144 | 39 | adantr | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> Y e. AssAlg ) |
| 145 | simprl | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> z e. ( Base ` ( Scalar ` Y ) ) ) |
|
| 146 | simprr | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> w e. ( H i^i B ) ) |
|
| 147 | 146 | elin2d | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> w e. B ) |
| 148 | eqid | |- ( .s ` Y ) = ( .s ` Y ) |
|
| 149 | 6 40 52 7 5 148 | asclmul1 | |- ( ( Y e. AssAlg /\ z e. ( Base ` ( Scalar ` Y ) ) /\ w e. B ) -> ( ( C ` z ) .x. w ) = ( z ( .s ` Y ) w ) ) |
| 150 | 144 145 147 149 | syl3anc | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> ( ( C ` z ) .x. w ) = ( z ( .s ` Y ) w ) ) |
| 151 | fveq2 | |- ( x = z -> ( C ` x ) = ( C ` z ) ) |
|
| 152 | 151 | eleq1d | |- ( x = z -> ( ( C ` x ) e. H <-> ( C ` z ) e. H ) ) |
| 153 | 49 | adantr | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> A. x e. K ( C ` x ) e. H ) |
| 154 | 56 | adantr | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> K = ( Base ` ( Scalar ` Y ) ) ) |
| 155 | 145 154 | eleqtrrd | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> z e. K ) |
| 156 | 152 153 155 | rspcdva | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> ( C ` z ) e. H ) |
| 157 | 146 | elin1d | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> w e. H ) |
| 158 | 156 157 | jca | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> ( ( C ` z ) e. H /\ w e. H ) ) |
| 159 | 9 | caovclg | |- ( ( ph /\ ( ( C ` z ) e. H /\ w e. H ) ) -> ( ( C ` z ) .x. w ) e. H ) |
| 160 | 158 159 | syldan | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> ( ( C ` z ) .x. w ) e. H ) |
| 161 | 150 160 | eqeltrrd | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> ( z ( .s ` Y ) w ) e. H ) |
| 162 | 72 | adantr | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> Y e. LMod ) |
| 163 | 7 40 148 52 | lmodvscl | |- ( ( Y e. LMod /\ z e. ( Base ` ( Scalar ` Y ) ) /\ w e. B ) -> ( z ( .s ` Y ) w ) e. B ) |
| 164 | 162 145 147 163 | syl3anc | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> ( z ( .s ` Y ) w ) e. B ) |
| 165 | 161 164 | elind | |- ( ( ph /\ ( z e. ( Base ` ( Scalar ` Y ) ) /\ w e. ( H i^i B ) ) ) -> ( z ( .s ` Y ) w ) e. ( H i^i B ) ) |
| 166 | 165 | ralrimivva | |- ( ph -> A. z e. ( Base ` ( Scalar ` Y ) ) A. w e. ( H i^i B ) ( z ( .s ` Y ) w ) e. ( H i^i B ) ) |
| 167 | eqid | |- ( LSubSp ` Y ) = ( LSubSp ` Y ) |
|
| 168 | 40 52 7 148 167 | islss4 | |- ( Y e. LMod -> ( ( H i^i B ) e. ( LSubSp ` Y ) <-> ( ( H i^i B ) e. ( SubGrp ` Y ) /\ A. z e. ( Base ` ( Scalar ` Y ) ) A. w e. ( H i^i B ) ( z ( .s ` Y ) w ) e. ( H i^i B ) ) ) ) |
| 169 | 72 168 | syl | |- ( ph -> ( ( H i^i B ) e. ( LSubSp ` Y ) <-> ( ( H i^i B ) e. ( SubGrp ` Y ) /\ A. z e. ( Base ` ( Scalar ` Y ) ) A. w e. ( H i^i B ) ( z ( .s ` Y ) w ) e. ( H i^i B ) ) ) ) |
| 170 | 120 166 169 | mpbir2and | |- ( ph -> ( H i^i B ) e. ( LSubSp ` Y ) ) |
| 171 | eqid | |- ( LSubSp ` ( I mPwSer R ) ) = ( LSubSp ` ( I mPwSer R ) ) |
|
| 172 | 137 171 167 | lsslss | |- ( ( ( I mPwSer R ) e. LMod /\ B e. ( LSubSp ` ( I mPwSer R ) ) ) -> ( ( H i^i B ) e. ( LSubSp ` Y ) <-> ( ( H i^i B ) e. ( LSubSp ` ( I mPwSer R ) ) /\ ( H i^i B ) C_ B ) ) ) |
| 173 | 172 | simprbda | |- ( ( ( ( I mPwSer R ) e. LMod /\ B e. ( LSubSp ` ( I mPwSer R ) ) ) /\ ( H i^i B ) e. ( LSubSp ` Y ) ) -> ( H i^i B ) e. ( LSubSp ` ( I mPwSer R ) ) ) |
| 174 | 142 143 170 173 | syl21anc | |- ( ph -> ( H i^i B ) e. ( LSubSp ` ( I mPwSer R ) ) ) |
| 175 | 32 21 171 | aspid | |- ( ( ( I mPwSer R ) e. AssAlg /\ ( H i^i B ) e. ( SubRing ` ( I mPwSer R ) ) /\ ( H i^i B ) e. ( LSubSp ` ( I mPwSer R ) ) ) -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ( H i^i B ) ) = ( H i^i B ) ) |
| 176 | 16 140 174 175 | syl3anc | |- ( ph -> ( ( AlgSpan ` ( I mPwSer R ) ) ` ( H i^i B ) ) = ( H i^i B ) ) |
| 177 | 34 36 176 | 3sstr3d | |- ( ph -> B C_ ( H i^i B ) ) |
| 178 | 177 12 | sseldd | |- ( ph -> X e. ( H i^i B ) ) |
| 179 | 178 | elin1d | |- ( ph -> X e. H ) |