This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left multiplication by a lifted scalar is the same as the scalar operation. (Contributed by Mario Carneiro, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclmul1.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| asclmul1.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| asclmul1.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| asclmul1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| asclmul1.t | ⊢ × = ( .r ‘ 𝑊 ) | ||
| asclmul1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| Assertion | asclmul1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐴 ‘ 𝑅 ) × 𝑋 ) = ( 𝑅 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclmul1.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | asclmul1.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | asclmul1.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 4 | asclmul1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 5 | asclmul1.t | ⊢ × = ( .r ‘ 𝑊 ) | |
| 6 | asclmul1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 8 | 1 2 3 6 7 | asclval | ⊢ ( 𝑅 ∈ 𝐾 → ( 𝐴 ‘ 𝑅 ) = ( 𝑅 · ( 1r ‘ 𝑊 ) ) ) |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 ‘ 𝑅 ) = ( 𝑅 · ( 1r ‘ 𝑊 ) ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐴 ‘ 𝑅 ) × 𝑋 ) = ( ( 𝑅 · ( 1r ‘ 𝑊 ) ) × 𝑋 ) ) |
| 11 | simp1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ AssAlg ) | |
| 12 | simp2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑅 ∈ 𝐾 ) | |
| 13 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ Ring ) |
| 15 | 4 7 | ringidcl | ⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ 𝑉 ) |
| 16 | 14 15 | syl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 1r ‘ 𝑊 ) ∈ 𝑉 ) |
| 17 | simp3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 18 | 4 2 3 6 5 | assaass | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑅 ∈ 𝐾 ∧ ( 1r ‘ 𝑊 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑅 · ( 1r ‘ 𝑊 ) ) × 𝑋 ) = ( 𝑅 · ( ( 1r ‘ 𝑊 ) × 𝑋 ) ) ) |
| 19 | 11 12 16 17 18 | syl13anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑅 · ( 1r ‘ 𝑊 ) ) × 𝑋 ) = ( 𝑅 · ( ( 1r ‘ 𝑊 ) × 𝑋 ) ) ) |
| 20 | 4 5 7 | ringlidm | ⊢ ( ( 𝑊 ∈ Ring ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝑊 ) × 𝑋 ) = 𝑋 ) |
| 21 | 14 17 20 | syl2anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝑊 ) × 𝑋 ) = 𝑋 ) |
| 22 | 21 | oveq2d | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · ( ( 1r ‘ 𝑊 ) × 𝑋 ) ) = ( 𝑅 · 𝑋 ) ) |
| 23 | 10 19 22 | 3eqtrd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐴 ‘ 𝑅 ) × 𝑋 ) = ( 𝑅 · 𝑋 ) ) |