This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a polynomial into a finite sum of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplcoe4.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplcoe4.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplcoe4.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplcoe4.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplcoe4.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplcoe4.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mplcoe4.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | mplcoe4 | ⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋 ‘ 𝑘 ) , 0 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplcoe4.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplcoe4.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 3 | mplcoe4.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplcoe4.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | mplcoe4.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mplcoe4.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | mplcoe4.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 10 | 1 2 3 8 5 4 9 6 7 | mplcoe1 | ⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 12 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
| 13 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑘 ∈ 𝐷 ) | |
| 15 | 1 11 4 2 7 | mplelf | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 | 1 9 2 8 3 11 12 13 14 16 | mplmon2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋 ‘ 𝑘 ) , 0 ) ) ) |
| 18 | 17 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋 ‘ 𝑘 ) , 0 ) ) ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋 ‘ 𝑘 ) , 0 ) ) ) ) ) |
| 20 | 10 19 | eqtrd | ⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , ( 𝑋 ‘ 𝑘 ) , 0 ) ) ) ) ) |