This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islss4.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| islss4.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| islss4.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| islss4.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| islss4.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | islss4 | ⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islss4.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | islss4.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 3 | islss4.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | islss4.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | islss4.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 6 | 5 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 7 | 1 4 2 5 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝑈 ) |
| 8 | 7 | ralrimivva | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) |
| 9 | 6 8 | jca | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) |
| 10 | 3 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 ⊆ 𝑉 ) |
| 11 | 10 | ad2antrl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) → 𝑈 ⊆ 𝑉 ) |
| 12 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 13 | 12 | subg0cl | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → ( 0g ‘ 𝑊 ) ∈ 𝑈 ) |
| 14 | 13 | ne0d | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 ≠ ∅ ) |
| 15 | 14 | ad2antrl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) → 𝑈 ≠ ∅ ) |
| 16 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 17 | 16 | subgcl | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑎 · 𝑏 ) ∈ 𝑈 ∧ 𝑐 ∈ 𝑈 ) → ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) |
| 18 | 17 | 3exp | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑎 · 𝑏 ) ∈ 𝑈 → ( 𝑐 ∈ 𝑈 → ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑎 · 𝑏 ) ∈ 𝑈 → ( 𝑐 ∈ 𝑈 → ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) ) |
| 20 | 19 | ralrimdv | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑎 · 𝑏 ) ∈ 𝑈 → ∀ 𝑐 ∈ 𝑈 ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) |
| 21 | 20 | ralimdv | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 → ∀ 𝑏 ∈ 𝑈 ∀ 𝑐 ∈ 𝑈 ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) |
| 22 | 21 | ralimdv | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ∀ 𝑐 ∈ 𝑈 ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) |
| 23 | 22 | impr | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ∀ 𝑐 ∈ 𝑈 ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) |
| 24 | 1 2 3 16 4 5 | islss | ⊢ ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ∀ 𝑐 ∈ 𝑈 ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) |
| 25 | 11 15 23 24 | syl3anbrc | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) |
| 26 | 9 25 | impbida | ⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) ) |