This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubg2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| issubg2.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| issubg2.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | issubg2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | issubg2.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | issubg2.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | 1 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
| 5 | eqid | ⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) | |
| 6 | 5 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 7 | 5 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 8 | eqid | ⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 9 | 8 | grpbn0 | ⊢ ( ( 𝐺 ↾s 𝑆 ) ∈ Grp → ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ≠ ∅ ) |
| 10 | 7 9 | syl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ≠ ∅ ) |
| 11 | 6 10 | eqnetrd | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ≠ ∅ ) |
| 12 | 2 | subgcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 13 | 12 | 3expa | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 14 | 13 | ralrimiva | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 15 | 3 | subginvcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 16 | 14 15 | jca | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 17 | 16 | ralrimiva | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 18 | 4 11 17 | 3jca | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 19 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝐺 ∈ Grp ) | |
| 20 | simpr1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝑆 ⊆ 𝐵 ) | |
| 21 | 5 1 | ressbas2 | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 22 | 20 21 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 23 | fvex | ⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ∈ V | |
| 24 | 22 23 | eqeltrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝑆 ∈ V ) |
| 25 | 5 2 | ressplusg | ⊢ ( 𝑆 ∈ V → + = ( +g ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 26 | 24 25 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → + = ( +g ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 27 | simpr3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) | |
| 28 | simpl | ⊢ ( ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 29 | 28 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 30 | 27 29 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 31 | oveq1 | ⊢ ( 𝑥 = 𝑢 → ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑦 ) ) | |
| 32 | 31 | eleq1d | ⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑢 + 𝑦 ) ∈ 𝑆 ) ) |
| 33 | oveq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝑢 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑢 + 𝑣 ) ∈ 𝑆 ) ) |
| 35 | 32 34 | rspc2v | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) ) |
| 36 | 30 35 | syl5com | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) ) |
| 37 | 36 | 3impib | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) |
| 38 | 20 | sseld | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( 𝑢 ∈ 𝑆 → 𝑢 ∈ 𝐵 ) ) |
| 39 | 20 | sseld | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( 𝑣 ∈ 𝑆 → 𝑣 ∈ 𝐵 ) ) |
| 40 | 20 | sseld | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( 𝑤 ∈ 𝑆 → 𝑤 ∈ 𝐵 ) ) |
| 41 | 38 39 40 | 3anim123d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 42 | 41 | imp | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) |
| 43 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 44 | 43 | adantlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 45 | 42 44 | syldan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 46 | simpr2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝑆 ≠ ∅ ) | |
| 47 | n0 | ⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑢 𝑢 ∈ 𝑆 ) | |
| 48 | 46 47 | sylib | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ∃ 𝑢 𝑢 ∈ 𝑆 ) |
| 49 | 20 | sselda | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ 𝐵 ) |
| 50 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 51 | 1 2 50 3 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑢 ) + 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 52 | 51 | adantlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑢 ) + 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 53 | 49 52 | syldan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ( ( 𝐼 ‘ 𝑢 ) + 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 54 | simpr | ⊢ ( ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) | |
| 55 | 54 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 56 | 27 55 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 57 | fveq2 | ⊢ ( 𝑥 = 𝑢 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑢 ) ) | |
| 58 | 57 | eleq1d | ⊢ ( 𝑥 = 𝑢 → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝐼 ‘ 𝑢 ) ∈ 𝑆 ) ) |
| 59 | 58 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑢 ) ∈ 𝑆 ) |
| 60 | 56 59 | sylan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑢 ) ∈ 𝑆 ) |
| 61 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ 𝑆 ) | |
| 62 | 30 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 63 | ovrspc2v | ⊢ ( ( ( ( 𝐼 ‘ 𝑢 ) ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( ( 𝐼 ‘ 𝑢 ) + 𝑢 ) ∈ 𝑆 ) | |
| 64 | 60 61 62 63 | syl21anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ( ( 𝐼 ‘ 𝑢 ) + 𝑢 ) ∈ 𝑆 ) |
| 65 | 53 64 | eqeltrrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 66 | 48 65 | exlimddv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 67 | 1 2 50 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 68 | 67 | adantlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 69 | 49 68 | syldan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 70 | 22 26 37 45 66 69 60 53 | isgrpd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 71 | 1 | issubg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
| 72 | 19 20 70 71 | syl3anbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 73 | 72 | ex | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 74 | 18 73 | impbid2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |