This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpl0.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mpl0.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mpl0.o | ⊢ 𝑂 = ( 0g ‘ 𝑅 ) | ||
| mpl0.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | ||
| mpl0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mpl0.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| Assertion | mpl0 | ⊢ ( 𝜑 → 0 = ( 𝐷 × { 𝑂 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpl0.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mpl0.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 3 | mpl0.o | ⊢ 𝑂 = ( 0g ‘ 𝑅 ) | |
| 4 | mpl0.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | |
| 5 | mpl0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mpl0.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 7 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 9 | 7 1 8 5 6 | mplsubg | ⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 10 | 1 7 8 | mplval2 | ⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
| 11 | eqid | ⊢ ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 12 | 10 11 | subg0 | ⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
| 13 | 9 12 | syl | ⊢ ( 𝜑 → ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 0g ‘ 𝑃 ) ) |
| 14 | 7 5 6 2 3 11 | psr0 | ⊢ ( 𝜑 → ( 0g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 𝐷 × { 𝑂 } ) ) |
| 15 | 13 14 | eqtr3d | ⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐷 × { 𝑂 } ) ) |
| 16 | 4 15 | eqtrid | ⊢ ( 𝜑 → 0 = ( 𝐷 × { 𝑂 } ) ) |