This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set has no elements. Theorem 6.14 of Quine p. 44. (Contributed by NM, 21-Jun-1993) (Proof shortened by Mario Carneiro, 1-Sep-2015) Remove dependency on ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 3-May-2023) (Proof shortened by BJ, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | noel | ⊢ ¬ 𝐴 ∈ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsb | ⊢ ( ∀ 𝑦 ¬ ⊥ → ¬ [ 𝑥 / 𝑦 ] ⊥ ) | |
| 2 | fal | ⊢ ¬ ⊥ | |
| 3 | 1 2 | mpg | ⊢ ¬ [ 𝑥 / 𝑦 ] ⊥ |
| 4 | dfnul4 | ⊢ ∅ = { 𝑦 ∣ ⊥ } | |
| 5 | 4 | eleq2i | ⊢ ( 𝑥 ∈ ∅ ↔ 𝑥 ∈ { 𝑦 ∣ ⊥ } ) |
| 6 | df-clab | ⊢ ( 𝑥 ∈ { 𝑦 ∣ ⊥ } ↔ [ 𝑥 / 𝑦 ] ⊥ ) | |
| 7 | 5 6 | bitri | ⊢ ( 𝑥 ∈ ∅ ↔ [ 𝑥 / 𝑦 ] ⊥ ) |
| 8 | 3 7 | mtbir | ⊢ ¬ 𝑥 ∈ ∅ |
| 9 | 8 | intnan | ⊢ ¬ ( 𝑥 = 𝐴 ∧ 𝑥 ∈ ∅ ) |
| 10 | 9 | nex | ⊢ ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ ∅ ) |
| 11 | dfclel | ⊢ ( 𝐴 ∈ ∅ ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ ∅ ) ) | |
| 12 | 10 11 | mtbir | ⊢ ¬ 𝐴 ∈ ∅ |