This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a monomial in one variable into a power of a variable. (Contributed by Mario Carneiro, 7-Jan-2015) (Proof shortened by AV, 18-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplcoe1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplcoe1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplcoe1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplcoe1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mplcoe1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplcoe2.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | ||
| mplcoe2.m | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| mplcoe2.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| mplcoe3.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mplcoe3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| mplcoe3.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | mplcoe3 | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) = ( 𝑁 ↑ ( 𝑉 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplcoe1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplcoe1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 3 | mplcoe1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplcoe1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | mplcoe1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mplcoe2.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | |
| 7 | mplcoe2.m | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 8 | mplcoe2.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 9 | mplcoe3.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 10 | mplcoe3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 11 | mplcoe3.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 12 | ifeq1 | ⊢ ( 𝑥 = 0 → if ( 𝑘 = 𝑋 , 𝑥 , 0 ) = if ( 𝑘 = 𝑋 , 0 , 0 ) ) | |
| 13 | ifid | ⊢ if ( 𝑘 = 𝑋 , 0 , 0 ) = 0 | |
| 14 | 12 13 | eqtrdi | ⊢ ( 𝑥 = 0 → if ( 𝑘 = 𝑋 , 𝑥 , 0 ) = 0 ) |
| 15 | 14 | mpteq2dv | ⊢ ( 𝑥 = 0 → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ 0 ) ) |
| 16 | fconstmpt | ⊢ ( 𝐼 × { 0 } ) = ( 𝑘 ∈ 𝐼 ↦ 0 ) | |
| 17 | 15 16 | eqtr4di | ⊢ ( 𝑥 = 0 → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) = ( 𝐼 × { 0 } ) ) |
| 18 | 17 | eqeq2d | ⊢ ( 𝑥 = 0 → ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) ↔ 𝑦 = ( 𝐼 × { 0 } ) ) ) |
| 19 | 18 | ifbid | ⊢ ( 𝑥 = 0 → if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
| 20 | 19 | mpteq2dv | ⊢ ( 𝑥 = 0 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| 21 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) ) | |
| 22 | 20 21 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
| 23 | 22 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
| 24 | ifeq1 | ⊢ ( 𝑥 = 𝑛 → if ( 𝑘 = 𝑋 , 𝑥 , 0 ) = if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) | |
| 25 | 24 | mpteq2dv | ⊢ ( 𝑥 = 𝑛 → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ) |
| 26 | 25 | eqeq2d | ⊢ ( 𝑥 = 𝑛 → ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) ↔ 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ) ) |
| 27 | 26 | ifbid | ⊢ ( 𝑥 = 𝑛 → if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) |
| 28 | 27 | mpteq2dv | ⊢ ( 𝑥 = 𝑛 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ) |
| 29 | oveq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ) | |
| 30 | 28 29 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
| 31 | 30 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
| 32 | ifeq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → if ( 𝑘 = 𝑋 , 𝑥 , 0 ) = if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) | |
| 33 | 32 | mpteq2dv | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) ) |
| 34 | 33 | eqeq2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) ↔ 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) ) ) |
| 35 | 34 | ifbid | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) |
| 36 | 35 | mpteq2dv | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) ) |
| 37 | oveq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) | |
| 38 | 36 37 | eqeq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
| 39 | 38 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
| 40 | ifeq1 | ⊢ ( 𝑥 = 𝑁 → if ( 𝑘 = 𝑋 , 𝑥 , 0 ) = if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) | |
| 41 | 40 | mpteq2dv | ⊢ ( 𝑥 = 𝑁 → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) ) |
| 42 | 41 | eqeq2d | ⊢ ( 𝑥 = 𝑁 → ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) ↔ 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) ) ) |
| 43 | 42 | ifbid | ⊢ ( 𝑥 = 𝑁 → if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) |
| 44 | 43 | mpteq2dv | ⊢ ( 𝑥 = 𝑁 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) ) |
| 45 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑁 ↑ ( 𝑉 ‘ 𝑋 ) ) ) | |
| 46 | 44 45 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) = ( 𝑁 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
| 47 | 46 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑥 , 0 ) ) , 1 , 0 ) ) = ( 𝑥 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) = ( 𝑁 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
| 48 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 49 | 1 8 48 5 9 10 | mvrcl | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 50 | 6 48 | mgpbas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
| 51 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 52 | 6 51 | ringidval | ⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝐺 ) |
| 53 | 50 52 7 | mulg0 | ⊢ ( ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) → ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( 1r ‘ 𝑃 ) ) |
| 54 | 49 53 | syl | ⊢ ( 𝜑 → ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) = ( 1r ‘ 𝑃 ) ) |
| 55 | 1 2 3 4 51 5 9 | mpl1 | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| 56 | 54 55 | eqtr2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 0 ↑ ( 𝑉 ‘ 𝑋 ) ) ) |
| 57 | oveq1 | ⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) = ( ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) | |
| 58 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝐼 ∈ 𝑊 ) |
| 59 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 60 | 2 | snifpsrbag | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∈ 𝐷 ) |
| 61 | 5 60 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∈ 𝐷 ) |
| 62 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 63 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 64 | 63 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 1 ∈ ℕ0 ) |
| 65 | 2 | snifpsrbag | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 1 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ∈ 𝐷 ) |
| 66 | 5 64 65 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ∈ 𝐷 ) |
| 67 | 1 48 3 4 2 58 59 61 62 66 | mplmonmul | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) , 1 , 0 ) ) ) |
| 68 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑋 ∈ 𝐼 ) |
| 69 | 8 2 3 4 58 59 68 | mvrval | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑉 ‘ 𝑋 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ) |
| 70 | 69 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) = ( 𝑉 ‘ 𝑋 ) ) |
| 71 | 70 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) |
| 72 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ 𝐼 ) → 𝑛 ∈ ℕ0 ) | |
| 73 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 74 | ifcl | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ∈ ℕ0 ) | |
| 75 | 72 73 74 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ 𝐼 ) → if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ∈ ℕ0 ) |
| 76 | 63 73 | ifcli | ⊢ if ( 𝑘 = 𝑋 , 1 , 0 ) ∈ ℕ0 |
| 77 | 76 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ 𝐼 ) → if ( 𝑘 = 𝑋 , 1 , 0 ) ∈ ℕ0 ) |
| 78 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ) | |
| 79 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) | |
| 80 | 58 75 77 78 79 | offval2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) ) |
| 81 | iftrue | ⊢ ( 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , 𝑛 , 0 ) = 𝑛 ) | |
| 82 | iftrue | ⊢ ( 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , 1 , 0 ) = 1 ) | |
| 83 | 81 82 | oveq12d | ⊢ ( 𝑘 = 𝑋 → ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) = ( 𝑛 + 1 ) ) |
| 84 | iftrue | ⊢ ( 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) = ( 𝑛 + 1 ) ) | |
| 85 | 83 84 | eqtr4d | ⊢ ( 𝑘 = 𝑋 → ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) = if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) |
| 86 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 87 | iffalse | ⊢ ( ¬ 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , 𝑛 , 0 ) = 0 ) | |
| 88 | iffalse | ⊢ ( ¬ 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , 1 , 0 ) = 0 ) | |
| 89 | 87 88 | oveq12d | ⊢ ( ¬ 𝑘 = 𝑋 → ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) = ( 0 + 0 ) ) |
| 90 | iffalse | ⊢ ( ¬ 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) = 0 ) | |
| 91 | 86 89 90 | 3eqtr4a | ⊢ ( ¬ 𝑘 = 𝑋 → ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) = if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) |
| 92 | 85 91 | pm2.61i | ⊢ ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) = if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) |
| 93 | 92 | mpteq2i | ⊢ ( 𝑘 ∈ 𝐼 ↦ ( if ( 𝑘 = 𝑋 , 𝑛 , 0 ) + if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) |
| 94 | 80 93 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) ) |
| 95 | 94 | eqeq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑦 = ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) ↔ 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) ) ) |
| 96 | 95 | ifbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → if ( 𝑦 = ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) |
| 97 | 96 | mpteq2dv | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) ∘f + ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 1 , 0 ) ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) ) |
| 98 | 67 71 97 | 3eqtr3rd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) |
| 99 | 1 5 9 | mplringd | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 100 | 6 | ringmgp | ⊢ ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd ) |
| 101 | 99 100 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 102 | 101 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
| 103 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 104 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 105 | 6 62 | mgpplusg | ⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝐺 ) |
| 106 | 50 7 105 | mulgnn0p1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ ( 𝑉 ‘ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) = ( ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) |
| 107 | 102 103 104 106 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) = ( ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) |
| 108 | 98 107 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ↔ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) = ( ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ( .r ‘ 𝑃 ) ( 𝑉 ‘ 𝑋 ) ) ) ) |
| 109 | 57 108 | imbitrrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
| 110 | 109 | expcom | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
| 111 | 110 | a2d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑛 , 0 ) ) , 1 , 0 ) ) = ( 𝑛 ↑ ( 𝑉 ‘ 𝑋 ) ) ) → ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , ( 𝑛 + 1 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑛 + 1 ) ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) ) |
| 112 | 23 31 39 47 56 111 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) = ( 𝑁 ↑ ( 𝑉 ‘ 𝑋 ) ) ) ) |
| 113 | 11 112 | mpcom | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑋 , 𝑁 , 0 ) ) , 1 , 0 ) ) = ( 𝑁 ↑ ( 𝑉 ‘ 𝑋 ) ) ) |