This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 8-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrbas.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrbas.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| psrbas.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psrbas.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrbas.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| Assertion | psrbas | ⊢ ( 𝜑 → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbas.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrbas.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | psrbas.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 4 | psrbas.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 5 | psrbas.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) | |
| 9 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( 𝐾 ↑m 𝐷 ) = ( 𝐾 ↑m 𝐷 ) ) | |
| 10 | eqid | ⊢ ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) = ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) | |
| 11 | eqid | ⊢ ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) | |
| 12 | eqid | ⊢ ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) = ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) | |
| 13 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) = ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) ) | |
| 14 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝐼 ∈ 𝑉 ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝑅 ∈ V ) | |
| 16 | 1 2 6 7 8 3 9 10 11 12 13 14 15 | psrval | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝑆 = ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → ( Base ‘ 𝑆 ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
| 18 | ovex | ⊢ ( 𝐾 ↑m 𝐷 ) ∈ V | |
| 19 | psrvalstr | ⊢ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) Struct 〈 1 , 9 〉 | |
| 20 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 21 | snsstp1 | ⊢ { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } | |
| 22 | ssun1 | ⊢ { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) | |
| 23 | 21 22 | sstri | ⊢ { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) |
| 24 | 19 20 23 | strfv | ⊢ ( ( 𝐾 ↑m 𝐷 ) ∈ V → ( 𝐾 ↑m 𝐷 ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) ) |
| 25 | 18 24 | ax-mp | ⊢ ( 𝐾 ↑m 𝐷 ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , ( 𝐾 ↑m 𝐷 ) 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑅 ) ↾ ( ( 𝐾 ↑m 𝐷 ) × ( 𝐾 ↑m 𝐷 ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) , ℎ ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑔 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ℎ ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ 𝐾 , 𝑔 ∈ ( 𝐾 ↑m 𝐷 ) ↦ ( ( 𝐷 × { 𝑥 } ) ∘f ( .r ‘ 𝑅 ) 𝑔 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝐷 × { ( TopOpen ‘ 𝑅 ) } ) ) 〉 } ) ) |
| 26 | 17 4 25 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ V ) → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |
| 27 | reldmpsr | ⊢ Rel dom mPwSer | |
| 28 | 27 | ovprc2 | ⊢ ( ¬ 𝑅 ∈ V → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
| 29 | 28 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
| 30 | 1 29 | eqtrid | ⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝑆 = ∅ ) |
| 31 | 30 | fveq2d | ⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( Base ‘ 𝑆 ) = ( Base ‘ ∅ ) ) |
| 32 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 33 | 31 4 32 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
| 34 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ ) | |
| 35 | 34 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( Base ‘ 𝑅 ) = ∅ ) |
| 36 | 2 35 | eqtrid | ⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐾 = ∅ ) |
| 37 | 3 | fczpsrbag | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
| 38 | 5 37 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝑥 ∈ 𝐼 ↦ 0 ) ∈ 𝐷 ) |
| 40 | 39 | ne0d | ⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐷 ≠ ∅ ) |
| 41 | 2 | fvexi | ⊢ 𝐾 ∈ V |
| 42 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 43 | 3 42 | rabex2 | ⊢ 𝐷 ∈ V |
| 44 | 41 43 | map0 | ⊢ ( ( 𝐾 ↑m 𝐷 ) = ∅ ↔ ( 𝐾 = ∅ ∧ 𝐷 ≠ ∅ ) ) |
| 45 | 36 40 44 | sylanbrc | ⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → ( 𝐾 ↑m 𝐷 ) = ∅ ) |
| 46 | 33 45 | eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ V ) → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |
| 47 | 26 46 | pm2.61dan | ⊢ ( 𝜑 → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |