This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplvsca.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplvsca.n | ⊢ ∙ = ( ·𝑠 ‘ 𝑃 ) | ||
| mplvsca.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mplvsca.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplvsca.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mplvsca.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| mplvsca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | ||
| mplvsca.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| Assertion | mplvsca | ⊢ ( 𝜑 → ( 𝑋 ∙ 𝐹 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplvsca.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplvsca.n | ⊢ ∙ = ( ·𝑠 ‘ 𝑃 ) | |
| 3 | mplvsca.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | mplvsca.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | mplvsca.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 6 | mplvsca.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 7 | mplvsca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | |
| 8 | mplvsca.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 9 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 10 | 1 9 2 | mplvsca2 | ⊢ ∙ = ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 11 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 12 | 1 9 4 11 | mplbasss | ⊢ 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 13 | 12 8 | sselid | ⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 14 | 9 10 3 11 5 6 7 13 | psrvsca | ⊢ ( 𝜑 → ( 𝑋 ∙ 𝐹 ) = ( ( 𝐷 × { 𝑋 } ) ∘f · 𝐹 ) ) |