This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpbn0.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grplid.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grplid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + 0 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpbn0.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grplid.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grplid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 5 | 1 2 3 | mndrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + 0 ) = 𝑋 ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + 0 ) = 𝑋 ) |